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Abstract

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial
redundancy. The proposed method is based on non-local means (NLM). NLMmethods have been applied successfully
in various image denoising applications. In the single-frame NLMmethod, each output pixel is formed as a weighted
sum of the center pixels of neighboring patches, within a given search window. The weights are based on the patch
intensity vector distances. The process requires computing vector distances for all of the patches in the search window.
Direct extension of this method from 2D to 3D, for video processing, can be computationally demanding. Note that
the size of a 3D search window is the size of the 2D search window multiplied by the number of frames being used to
form the output. Exploiting a large number of frames in this manner can be prohibitive for real-time video processing.
Here, we propose a novel recursive NLM (RNLM) algorithm for video processing. Our RNLMmethod takes advantage
of recursion for computational savings, compared with the direct 3D NLM. However, like the 3D NLM, our method is
still able to exploit both spatial and temporal redundancy for improved performance, compared with 2D NLM. In our
approach, the first frame is processed with single-frame NLM. Subsequent frames are estimated using a weighted sum
of pixels from the current frame and a pixel from the previous frame estimate. Only the single best matching patch
from the previous estimate is incorporated into the current estimate. Several experimental results are presented here
to demonstrate the efficacy of our proposed method in terms of quantitative and subjective image quality.
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1 Introduction
Digital videos are invariably corrupted by noise during
acquisition. Digital video tends to have a lower signal-to-
noise ratio (SNR) than static images, due to the short inte-
gration times needed to achieve desired frame rates [1].
Low-light conditions and small camera apertures tend to
worsen the problem. In the case of some medical imagery,
like x-ray images and video, short integration times are
essential to limit the x-ray dose to the patient. While dig-
ital video may suffer from lower SNR, it also provides
3D data that often has significant temporal redundancy
[2]. Video denoising algorithms seek to reduce noise by
exploiting the both spatial and temporal correlation in the
signal [1]. The non-local means (NLM) algorithm [3] for
image denoising has received significant attention in the
image processing community. This may be, in large part,
because of generally good performance, and its intuitive
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and conceptually simple nature. The standard NLM algo-
rithm is introduced by Buades et al. in [3]. The NLM
method exploits self-similarity that appears in most natu-
ral images for noise reduction. In the single-frame NLM
method, each output pixel is formed as a weighted sum
of the center pixels of neighboring patches, within a given
search window. The weights are based on similarity with
respect to the reference patch. The similarity is measured
by means of patch intensity vector distances. Pixels from
patches with higher similarity (lower vector distances) are
given more weight, using a negative exponential weight-
ing. One or more tuning parameters are used to control
the weighting.
Many variations of the NLM method have been pro-

posed to reduce the computational complexity and/or
improve the denoising performance. In the work of
Mahmoudi and Sapiro [4], dissimilar neighborhoods are
excluded from the weighted sum. Dissimilar blocks are
identified based on mean value and gradient. This may
improve performance, and it reduces the computational
cost. Wang et al. [5] proposed an efficient summed square
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image scheme as another means to accelerate the patch
similarity computations. A cluster tree arrangement has
been used to group similar patches in [6]. A method
using preselection of the most similar voxels, multithread-
ing, and blockwise implementation is presented in [7].
Furthermore, adaptive smoothing neighborhoods are pre-
sented in [8], and a kernel regression method is presented
in [9]. The method in [10] uses a spatially recursive
moving-average filter to compute the Euclidean distances.
The estimation of the mean square error (MSE) from
a noisy image is performed using an analytical expres-
sion based on Stein’s unbiased risk [11]. Another speed
enhancement, based on probabilistic early termination, is
proposed in [12]. Karnati et al. [13] proposed a multi-
resolution approach requiring fewer comparisons.
Many methods, originally proposed for single-image

denoising, have been adapted to video denoising. Among
these are the NLM method, which has been applied suc-
cessfully to image sequences in [14] and [15]. Han et al.
[16] introduced the dynamic non-local means (DNLM)
video denoising method, which is based on Kalman filter
theory. The basic idea of this filter is to use informa-
tion from the past video frames to restore the current
frame, combining the NLM and Kalman filtering algo-
rithms. However, the computational complexity is still
relatively high with this method. Another example of a 2D
denoisingmethod, later extended to 3D, is block-matching
and 3D (BM3D) filtering [17]. BM3D generally outper-
forms NLM in single-image denoising but has a higher
computational complexity because of the 3D transforms
required. The BM3D method, like NLM, uses vector dis-
tances between 2D image blocks. The most similar blocks
are stacked into a 3D group and then filtered through a
transform-domain shrinkage operation. The BM3D filter-
ing has been extended to video denoising in the video
BM3D (VBM3D) algorithm described in [18]. While there
may be many variations of patch-based image denois-
ing algorithms. What they share in common is that they
require computing vector distances between each refer-
ence patch and neighboring patches. Direct extension of
such methods from 2D to 3D, for video processing, can
be computationally demanding. Note that the size of a
3D search window is the size of the 2D search window
multiplied by the number of frames being used to form
the output. Exploiting a large number of frames in this
manner can be prohibitive for real-time video processing.
In this paper, we propose a novel temporally recur-

sive NLM (RNLM) algorithm for video processing. Our
RNLM method takes advantage of temporal recursion
for computational savings, compared with the direct 3D
NLM. However, like the 3D NLM, our method is still
able to exploit both spatial and temporal redundancy for
improved performance, compared with 2D NLM. In our
approach, the first frame is processed with single-frame

NLM. Subsequent frames are estimated using a weighted
sum of pixels from the current frame and a pixel from the
previous frame estimate. Only the best-matching patch
from the previous estimate is incorporated into the cur-
rent estimate. This is done to maximize the temporal
correlation. Our approach shares its recursive nature with
DNLM in [16]. However, here, we have opted for a much
simpler framework, in keeping with the simplicity of the
original NLM. Several experimental results are presented
here to demonstrate the efficacy of our proposed method
in terms of quantitative and subjective image quality. We
show that our approach offers a computationally sim-
ple approach to video denoising with a performance that
rivals much more complex methods.
The remainder of the paper is organized as follows.

Section 2 introduces the observation model and some
benchmark methods. The proposed RNLM algorithm is
presented in Section 3. Experimental results are presented
in Section 4. Finally, we offer conclusions in Section 5.

2 Video restoration
2.1 Observation Model
In this section, we present the observation model and
notation for our video restoration methods. Some of the
key variables used in this paper are defined in Table 1. We
use the standard degradation model, treating the noise as
additive and signal independent. This is expressed as

yk(i) = xk(i) + nk(i), (1)

for i = 1, 2, . . . ,N and k = 1, 2, . . . ,K . Note that yk(i)
represents a pixel in the observed frame in the video
sequence. The index i refers to the specific pixel in the spa-
tial domain, and the k denotes the temporal frame number
in the image sequence. The variable xk(i) denotes the cor-
responding pixel in the ideal input frame. The noise is
represented by nk(i) ∼ N (0, σ 2

n ), which is assumed to
be samples of a zero-mean independent and identically
distributed Gaussian random variable, with variance σ 2

n .

Table 1 Variable definitions used to describe the proposed video
restoration method

xk(i) Ideal pixel i in frame k

yk(i) Noisy pixel i in frame k

x̂k(i) Estimated pixel i in frame k

yk(i) Lexicographical patch about pixel i in frame k in {yk(·)}
N Number of pixels in one frame

K Number of frames in input sequence

L Number of frames used by 3D NLM to generate one frame output

Ms NLM search window dimension (Ms × Ms)

Mp NLM patch dimension (Mp × Mp)

Ns BMA search window dimension (Ns × Ns)

Nb BMA block dimension (Nb × Nb)
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2.2 Single-frame non-local means filter
We begin by defining the single-frame NLM (SNLM) [3],
upon which our method is built. Processing the frames
from an image sequence individually, the SNLM output
can be expressed as

x̂k(i) = 1
Wk,i

∑

j∈ε(i)
wk(i, j)yk(j), (2)

where x̂k(i) denotes the estimated image at pixel i in frame
k. The set ε(i) contains the indices of the pixels within
an Ms × Ms search window centered about pixel i. The
variable wk(i, j) is the weight applied to pixel j, when esti-
mating pixel i in frame k. To normalize the weights, the
variable Wk,i is used, and this is simply the sum of the
individual weights.
The SNLM weights are computed based on patch sim-

ilarity and spatial proximity. In particular, wk(i, j) is com-
puted as

wk(i, j) = exp
{

−
∥∥yk(i) − yk(j)

∥∥2

2σ 2
y

− d(i, j)2

2σ 2
d

}
, (3)

andWk,i can be expressed as

Wk,i =
∑

j∈ε(i)
wk(i, j). (4)

Note that the variable yk(i) is a vector in lexicographical
form containing pixels from an Mp × Mp patch centered
about pixel i in frame k from the sequence {yk(·)}. The
variable d(i, j)2 is the squared Euclidean distance between
pixel i and j. The parameter σ 2

y is a tuning parameter to
control the decay of the exponential weight function with
regard to patch similarity, and σ 2

d is a tuning parame-
ter controlling the decay with regard to spatial proximity
between pixels i and j. It can be seen from Eq. (3) that the
weight given to pixel yk(j) goes down as

∥∥yk(i) − yk(j)
∥∥2

goes up. The weight also goes down with the spatial
distance between pixel i and j. Note that the tuning param-
eter, σ 2

y , is often set close to the noise variance. Studies of
filter parameter selection can be found in [3, 19–21].

2.3 3D non-local means filter
In this section, we introduce a direct extension of 2D
SNLM to 3D, to use as an additional performance
benchmark. The 3D NLM uses a spatio-temporal search
window to provide improved video denoising. In our
approach, the patches remain 2D, but the search window
is extended to 3D. This version of the 3D NLM is given by

x̂k(i) = 1
Wk,i

∑

j∈ε(i)

∑

m∈ψ(k)
wk,m(i, j)ym(j), (5)

where wk,m(i, j) is the weight for pixel j of frame m, when
estimating pixel i of frame k. The temporal search window
is defined by ψ(k), which is the set of frame indices used

in the 3D search window for the estimation of frame k. In
our experimental results, we use a causal temporal win-
dow comprised of the most recent L frames, and this is
represented as ψ(k) = {k, k − 1, . . . , k − L + 1}.
The 3D NLM weights are computed as

wk,m(i, j)=exp
{
−

∥∥yk(i) − ym(j)
∥∥2

2σ 2
y

− d(i, j)2

2σ 2
d

− (k − m)2

2σ 2
t

}
,

(6)

where a new temporal proximity tuning parameter, σ 2
t

is introduced. This extra tuning parameter is a natural
extension to the spatial proximity parameter σ 2

d .
Samples from frame numbers that are far from the esti-
mation sample will receive less weight using an expo-
nential weighting controlled by σ 2

t . A small σ 2
t gives

a large penalty for frame difference. The weights are
normalized using

Wk,i =
∑

j∈ε(i)

∑

m∈ψ(k)
wk,m(i, j). (7)

Other similar extensions of the SNLM to 3D can be found
in [22, 23].

3 Method
3.1 The proposed RNLM video denoising algorithm

definition
The goal of the proposed RNLM method is to effectively
exploit spatio-temporal information, as is done with the
3D NLM in Eq. (5) but with a computational complexity
more in line with the SNLM in Eq. (2). To do so, RNLM
estimate is formed as a weighted sum of pixels from the
current frame, like Eq. (2), but it also includes a previ-
ous frame pixel estimate. That is, the current input frame
and the prior output frame are used to form the cur-
rent output. This type of temporal recursive processing
helps to exploit the temporal signal correlation, without
significantly increasing the search window size or overall
computational complexity.
Specifically, the estimate for the proposed RNLM is

given by

x̂k(i) = 1
Wk,i

⎡

⎣wx̂,k(i)x̂k−1(sk(i)) +
∑

j∈ε(i)
wy,k(i, j)yk(j)

⎤

⎦,

(8)

where x̂k−1(sk(i)) is the previous frame estimate (i.e.,
frame k − 1) at pixel sk(i) ∈ {1, 2, . . . ,N}. Pixel sk(i)
is selected from {x̂k−1(·)} based on a standard block-
matching algorithm (BMA) with respect to the block in
input frame k centered about pixel i. For the selection of
sk(i), we allow for a potentially different block and search
size from that used for the within-frame processing. In
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particular, the block-matching block size is Nb × Nb, with
anNs ×Ns search window. As in Eq. (2) for the SNLM, the
set ε(i) in Eq. (8) contains the indices of the pixels within
an Ms × Ms search window centered about pixel i. The
recursive weight in Eq. (8) iswx̂,k(i), and the non-recursive
weights, wy,k(i, j), are similar to that for the SNLM. We
shall define and discuss all of the weights shortly. The
relationship among the various pixels used in the RNLM
estimation process is depicted in Fig. 1. Shown are the raw
unprocessed frames in parallel with the processed frames.
Output x̂k(i) is formed using a weighted sum of the input
frames pixels, shown on the left, and the best matching
previous processed output, shown on the back right.
Let us now define the weights. The non-recursive

weights are defined in a manner similar to SNLM. Specif-
ically, these are given by

wy,k(i, j) = exp
{

−
∥∥yk(i) − yk(j)

∥∥2

hyb
− σ 2

n
hyn

}
, (9)

where hyb and hyn are tuning parameters. Here, we do not
use the spatial distance weighting term of the SNLM. This
could easily be added, but it did not provide improved
performance in out experimental results. The recursive
weights are given by

wx̂,k(i) = exp
{

−
∥∥yk(i) − x̂k−1(sk(i))

∥∥2

hx̂b
−

σ 2
x̂k−1(sk(i))

hx̂n

}
,

(10)

where hx̂b and hx̂n are tuning parameters, and σ 2
x̂k−1(sk(i))

is the residual noise variance associated with x̂k−1(sk(i)).
The vector x̂k−1(sk(i)) is theMp×Mp patch of pixels about
pixel x̂k−1(sk(i)) (shown in Fig. 1) in lexicographical vector
form. The weight normalization factor here is given by

Wk,i = wx̂,k(i) +
∑

j∈εy(i)
wy,k(i, j). (11)

Finally, assuming the noise is independent and identically
distributed, the residual noise variance can be computed
recursively as follows

σ 2
x̂k (i) =

w2
x̂,k(i)σ

2
x̂k−1

(sk(i)) + ∑
j∈εy(i)

w2
y,k(i, j)σ

2
n

W 2
k,i

. (12)

Note that Eq. (12) is not the error variance. Rather it only
accounts for the variance of the noise component of the
error associated with the estimate x̂k−1(sk(i)).
The RNLM weights in Eqs. (9) and (10) have a total of

four tuning parameters, two to govern the non-recursive
weights, and two to govern the recursive weights. In the
non-recursive weights in Eq. (9), the parameter hyb serves
the same role as σ 2

y in the SNLM in Eq. (3). We refer
to this weight as the non-recursive bias error weight. We
view ||yk(i) − yk(j)||2 as a measure of the bias error in
yk(j) with respect to the true sample xk(i) that we are esti-
mating. That is, underlying signal differences between the

Fig. 1 Block diagram showing the pixels in the video sequence used in proposed RNLM algorithm. The left side shows the raw input frames, and the
right side shows the processed frames. Because of the recursive processing, samples from the both input and processed frames are used to form the
current estimate
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pixels i and j are being quantified by this term. The tun-
ing parameter hyb controls the exponential decay of the
weights as a function of this bias error. The noise error
associated with yk(j) is given by the constant noise vari-
ance σ 2

n . The noise variance in Eq. (9) is scaled by the
hyn , to control the weight decay as a function of the noise
variance. For the recursive weight, we have similar tun-
ing parameters. The term ||yk(i)−x̂k−1(sk(i))||2 quantifies
the bias error associated with x̂k−1(sk(i)), and the residual
noise variance associated with this estimate is σx̂2k−1(sk(i))

,
and may be computed using Eq. (12). We give each of
these error quantities a tuning parameter, to balance their
impact on the resulting filter weights. The bias error for
the recursive sample is scaled by hx̂b , and the residual
noise term is scaled by hx̂n .
We acknowledge that the proposed RNLM does not

have the optimal framework of the Kalman filter [16].
However, it can exploit temporal signal correlation
effectively, as we shall show in Section 4. By choos-
ing the tuning parameters to balance the bias and
noise components of the recursive and non-recursive
terms, very good performance can be achieved with
a low computational complexity. We believe that the
RNLM may provide useful solution for many video
denoising applications, and we believe it is in keep-
ing with the spirit and simplicity of the original
NLMmethod.

3.2 Computational complexity
In this section, we compare the computational complexity
of SNLM, 3D NLM, and RNLM by counting the num-
ber of multiplications and additions required to compute
one processed output pixel. Beginning with the SNLM,
the number of floating point multiplies and adds to
compute Eq. (2) is M2

s . Computing the weights based
on Eq. (3) requires M2

s vector distances, for vectors of
size M2

p × 1. This requires approximately 2M2
s M2

p addi-
tions/subtractions, and M2

s M2
p multiplications. Another

M2
s adds and multiplies is needed to compute and apply

the weight normalization in Eq. (4).
The 3D NLM algorithm requires LM2

s floating point
multiplies and adds to compute Eq. (5). The weights
from Eq. (6) require LM2

s vector distances using M2
p ×

1 vectors. This requires approximately 2LM2
s M2

p addi-
tions/subtractions and LM2

s M2
p multiplications. Another

LM2
s adds and multiplies is needed to compute and apply

the weight normalization in Eq. (7). Thus, the complex-
ity of the 3D NLM algorithm increases linearly with the
number of frames, L.
The process of the RNLM filter is accomplished in sev-

eral steps. The output in Eq. (8) requires M2
s + 1 floating

pointmultiplies and adds. The computation of the weights
in Eqs. (9) and (10) requiresM2

s +1 vector distances using

M2
p×1 vectors. This requires approximately 2(M2

s +1)M2
p

additions/subtractions and 2M2
s M2

p multiplications. The
residual noise recursion in Eq. (12) requiresM2

s + 1 float-
ing point multiplies and adds. Finally, if BMA is used to
find sk(i) in Eq. (8), this requires N2

s vector distances with
N2
b × 1 vectors. This requires approximately 2N2

s N2
b addi-

tions/subtractions and N2
s N2

b multiplications. The weight
normalization operation is accomplished with M2

s + 1
floating point adds to compute Eq. (11). Note that fast
parallel architectures are available for rapid BMA compu-
tation [24–26].
Note that if we let Ns = Ms and Nb = Mp, then

RNLM has a computational complexity comparable to
3D NLM for L = 2 frames. Also, if we simply let sk(i) = i
(i.e., no BMA option), the RNLM has a computational
complexity that is approximately the same a SNLM. How-
ever, we have found that the BMA matching significantly
improves performance in video sequences with signifi-
cant amounts of motion. Furthermore, we have found that
it is generally advantageous to choose Nb > Mp. This
helps to provide a better match for the the important sam-
ple x̂k−1(sk(i)) . The size of the search window Ns maybe
selected based on the temporal motion expected in the
video sequence.
The RNLM method has a relatively low computa-

tional complexity comparedwithmany transform-domain
patch-based algorithms such as BM3D and VBM3D.
Details of the BM3D implementation are presented in
[27]. These transform-domain methods form a 3D cube
from selected patches and perform a transform-domain
shrinkage operation based on the fast Fourier transform
(FFT), discrete cosine transform (DCT), orWavelet trans-
form. The patch selection operations are common to all
of these methods, including the RNLM. However, the
transform-based denoising methods have the additional
requirement of computing forward and backward 3D
transform on blocks of size M = Mp × Mp × P for
each pixel, where P is the number of patches selected
[27]. Using row-column decomposition, such transforms
are known to have a complexity of order M log(M) [27].
There is no such corresponding processing requirement
for the RNLM.

4 Results and discussion
In order to illustrate the efficacy of the proposed RNLM
algorithm, we present a number of experimental results.
We compare our method to several state-of-the-art meth-
ods including SNLM [3], 3D NLM, BM3D [17], VBM3D
[18], and DNLM [16]. Our results make use of standard
and publicly available video sequences allowing for repro-
ducible and comparative results. These sequences present
variations in scene content, lighting conditions, and scene
motion. We artifically degrade the imagery with Gaussian
noise and compare the restored images to the originals.
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Table 2 PSNR comparison with competitive denoising algorithms using five different sequences and eight noise standard deviation
levels

σn

Video: Salesman Tennis Fl. Gard. Miss Am. Foreman

Overall PSNRRes.: 288 × 352 240 × 352 240 × 352 288 × 360 288 × 352

Frames: 50 150 150 150 300

5 SNLM 37.14 36.49 36.50 42.08 38.43 38.13

BM3D 38.32 37.54 37.02 43.09 38.83 38.96

RNLM (no BMA) 39.36 37.80 36.46 42.21 39.95 39.16

RNLM (BMA) 39.59 38.61 37.09 42.74 40.55 39.71

VBM3D 41.35 40.03 37.40 43.98 39.91 40.53

10 SNLM 33.28 32.66 31.03 39.23 35.17 34.27

BM3D 34.51 33.63 31.85 40.39 35.21 35.12

RNLM (no BMA) 36.14 34.04 31.05 39.66 36.13 35.41

RNLM (BMA) 36.31 34.40 32.08 40.22 36.72 35.95

VBM3D 38.33 36.37 32.58 42.17 36.67 37.22

15 SNLM 30.92 30.57 28.16 37.22 33.16 32.01

BM3D 32.43 31.65 28.99 38.61 33.26 32.99

RNLM (no BMA) 33.16 31.96 28.50 37.66 34.20 33.08

RNLM (BMA) 34.30 32.49 29.47 38.53 34.85 33.93

VBM3D 36.55 34.35 29.93 40.93 34.87 35.33

20 SNLM 29.38 29.35 26.29 35.69 31.70 30.48

BM3D 31.02 30.35 27.04 37.22 31.90 31.51

RNLM (no BMA) 31.44 30.65 26.62 36.61 32.68 31.59

RNLM (BMA) 32.79 30.93 27.74 37.24 33.37 32.42

VBM3D 35.07 32.92 28.06 39.93 33.54 33.91

25 SNLM 28.20 28.52 24.91 34.51 30.48 29.32

BM3D 29.94 29.38 25.57 36.06 30.85 30.36

RNLM (no BMA) 30.16 29.26 25.30 35.57 31.08 30.27

RNLM (BMA) 31.61 29.92 26.57 36.40 32.09 31.32

VBM3D 33.69 31.83 26.55 39.04 32.42 32.71

30 SNLM 27.27 27.69 23.83 33.54 29.41 28.35

BM3D 29.06 28.58 24.39 34.19 29.99 29.24

RNLM (no BMA) 29.22 28.28 24.23 34.79 30.08 29.32

RNLM (BMA) 30.64 28.80 25.55 35.70 31.10 30.36

VBM3D 32.45 30.96 25.21 37.40 31.42 31.49

35 SNLM 26.53 26.85 22.96 32.72 28.47 27.51

BM3D 28.28 27.85 23.41 34.19 29.23 28.59

RNLM (no BMA) 28.48 27.53 23.35 34.05 29.53 28.58

RNLM (BMA) 29.82 27.99 24.68 35.11 30.27 29.57

VBM3D 31.34 30.24 24.28 37.40 30.59 30.77

40 SNLM 25.93 26.07 22.23 32.02 27.65 26.78

BM3D 27.38 27.04 22.60 33.26 28.30 27.72

RNLM (no BMA) 27.96 25.74 22.55 33.55 28.83 27.72

RNLM (BMA) 29.16 27.16 23.96 34.58 29.54 28.87

VBM3D 30.32 29.60 23.28 36.33 29.74 29.85
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Table 3 SSIM comparison with published results for several competitive denoising algorithms using five different sequences and three
noise standard deviation levels

σn

Video: Salesman Tennis Fl. Gard. Miss Am. Foreman

Overall SSIMRes.: 288 × 352 240 × 352 240 × 352 288 × 360 288 × 352

Frames: 50 150 150 150 300

10 SNLM 0.887 0.853 0.934 0.890 0.907 0.894

BM3D 0.917 0.869 0.963 0.959 0.918 0.925

WRSTF [31] 0.932 0.897 0.953 0.908 0.927 0.923

SEQWT [32] 0.900 0.842 0.941 NA NA 0.894

3DWTF [33] 0.923 0.856 0.909 NA NA 0.896

IFSM [34] 0.904 0.855 0.927 0.904 0.886 0.895

3DSWDCT [36] 0.955 0.894 0.959 0.946 0.932 0.937

VBM3D 0.959 0.916 0.963 0.967 0.934 0.948

ST-GSM [36] 0.960 0.894 0.950 0.952 0.937 0.939

DNLM [16] 0.931 0.856 0.947 0.964 0.946 0.928

RNLM (no BMA) 0.937 0.881 0.953 0.954 0.923 0.930

RNLM (BMA) 0.939 0.895 0.960 0.960 0.925 0.936

15 SNLM 0.825 0.759 0.886 0.829 0.870 0.834

BM3D 0.878 0.817 0.937 0.948 0.888 0.893

WRSTF [31] 0.901 0.839 0.922 0.877 0.877 0.883

SEQWT [32] 0.846 0.722 0.893 NA NA 0.820

3DWTF [33] 0.903 0.793 0.872 NA NA 0.856

IFSM [34] 0.851 0.776 0.882 0.857 0.836 0.840

3DSWDCT [36] 0.930 0.834 0.931 0.928 0.907 0.906

VBM3D 0.943 0.874 0.940 0.961 0.911 0.926

ST-GSM [36] 0.941 0.841 0.925 0.943 0.917 0.913

DNLM [16] 0.889 0.795 0.906 0.951 0.929 0.894

RNLM (no BMA) 0.883 0.811 0.900 0.941 0.887 0.884

RNLM (BMA) 0.902 0.829 0.933 0.945 0.901 0.902

20 SNLM 0.768 0.679 0.836 0.761 0.833 0.775

BM3D 0.843 0.780 0.909 0.936 0.861 0.866

WRSTF [31] 0.868 0.790 0.889 0.846 0.873 0.853

SEQWT [32] 0.796 0.716 0.842 NA NA 0.785

3DWTF [33] 0.882 0.740 0.840 NA NA 0.821

IFSM [34] 0.801 0.709 0.837 0.812 0.793 0.790

3DSWDCT [36] 0.905 0.790 0.900 0.909 0.884 0.878

VBM3D 0.923 0.836 0.918 0.956 0.891 0.905

ST-GSM [36] 0.923 0.797 0.900 0.936 0.901 0.891

DNLM [16] 0.849 0.758 0.865 0.939 0.913 0.865

RNLM (no BMA) 0.881 0.779 0.881 0.930 0.855 0.865

RNLM (BMA) 0.886 0.783 0.905 0.937 0.876 0.877

NA not applicable
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Table 4 Additional PSNR performance comparisons with various published results. All PSNR values are reported in decibel

Video Salesman Fl. Gard. Miss Am. Suzie Foreman

Input PSNR (dB) 28 24 28 28 28 24 28 24

STA [23] 35.13 32.60 31.33 39.39 37.07 35.11 34.94 32.90

K-SVD [37] 37.91 35.59 32.13 40.49 37.96 35.95 37.86 35.86

ST-GSM [36] 37.93 35.17 NA 41.43 38.36 36.21 36.85 34.37

3D-Patch [22] 39.26 36.35 NA 42.23 38.40 36.32 36.88 34.55

VBM3D [18] 38.79 36.07 32.51 41.64 38.16 36.24 37.27 35.19

SNLM [16] 32.97 30.02 30.33 38.47 34.33 31.90 34.92 32.65

DNLM [16] 35.22 32.73 31.28 39.70 37.22 35.25 36.19 34.06

RNLM (no BMA) 36.19 32.78 30.94 39.60 38.43 35.83 36.17 33.87

RNLM (BMA) 36.36 34.03 32.01 40.07 39.36 36.55 36.46 34.37

The metrics we shall use are the peak signal-to-noise
ratio (PSNR) and the structural similarity index (SSIM).
The PSNR metric in units of decibels (dB) is defined as

PSNR(k) = 10 × log10
(

R2

MSE(k)

)
, (13)

where R is the maximum limit of the dynamic range of
the image. For our 8-bit images, R = 255. The variable,

MSE(k), is the mean squared error for frame k, given by

MSE(k) = 1
N

N∑

i=1
(xk(i) − x̂k(i))2, (14)

where xk(i) is the true pixel value, and x̂k(i) is the esti-
mated pixel. The SSIM provides an aditional metric that

Fig. 2 PSNR (dB) versus frame number using several methods for the Flower Garden sequence corrupted with a noise level of σ = 40. The RNLM
(BMA) method gives the best performance for this sequence
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some argue is more consistent with subjective perception
than PSNR [28–30].
In Table 2, we provide PSNR results for five different

image sequences, each with eight different noise stan-
dard deviations. The proposed RNLM method results are
reported for two variations. The results labeled RNLM
(BMA) refers to the proposedmethod where blockmatch-
ing is employed to find the best match for the recursive
sample x̂k−1(sk(i)). The (no BMA) version simply uses
the estimate pixel position, such that sk(i) = i. This ver-
sion has a reduced computational complexity. However, as
shown in Table 2, using BMA gives improved results.
The results in Table 2 show that the RNLM method

consistently outperforms the SNLM. Thus, the recur-
sive processing is providing a clear performance benefit.
RNLM also outperforms single-frame BM3D. VBM3D
does provide higher PSNR values in most cases, but the
computational complexity of that method is far greater,
and the processing of the video is non-causal. On the
other hand, RNLM has a low computational complexity,
and the processing is fully causal, allowing for real-time
processing.
SSIM results for the same sequences are shown in

Table 3. In this table, several additional published results
are reported for comparison. These include wavelet
domain recursive spatio-temporal filtering (WRSTF)
[31], sequential wavelet domain and temporal filtering
(SEQWT) [32], 3D wavelet transform method (3DWTF)
[33], inter-frame statistical modeling (IFSM) [34], 3D slid-
ing window discrete cosine transform (3DSWDCT) [35],
VBM3D [18], spatiotemporal Gaussian scale mixture (ST-
GSM) [36], andDNLM [16]. The results for thesemethods

are the reported results from the respective papers for
the same sequences and noise levels. The standard devi-
ations of the additive Gaussian noise are 10, 15, and
20. It can be seen that the RNLM method gives higher
SSIM than SNLM, WRSTF, SEQWT, 3DWTF, IFSM, and
DNLM, with average SSIM gains of 0.070, 0.018, 0.059,
0.034, 0.063, and 0.0091, respectively. The SSIM of RNLM
is competitive with 3DSWDCT and ST-GSM. However,
VBM3D gives the best results here.
Additional PSNR results are provided in Table 4 for two

noise levels. The noisy input image PSNRs here are 24
and 28 dB. Comparison methods here include space time
adaption (STA) [23], K-means singular value decomposi-
tion (K-SVD) [37], ST-GSM [36], 3D-patch [22], VBM3D
[18], DNLM [16], and SNLM. The NLM patch size is
Mp = 7. The NLM search window Ms = 11. The BMA
search and block-matching size used Ns = 3, Nb = 29,
respectively. As one can see, RNLM (BMA) outperforms
STA, DNLM, RNLM (No BMA), and SNLMwith the aver-
age PSNR gains of 1.35, 0.95, 0.68, and 2.96, respectively.
Figures 2 and 3 show the restored PSNR for individ-

ual frames 1 to 150 for the sequences Flower Garden and
Salesman, respectively. The noise standard deviation for
these results is σn = 40. The methods shown are VBM3D,
BM3D, SNLM, RNLM (No BMA), and RNLM (BMA).
The proposed RNLM (BMA) provides the best results
in the Flower Garden video sequence, and provides the
second best performance on the Salesman sequence.
In Fig. 4, we offer a visual comparison of denoised frame

92 from the Salesman sequence with Gaussian noise at
σn = 40. Figure 4a shows the original frame. The noisy
frame is shown in Fig. 4b. Figure 4c is the denoised image

Fig. 3 PSNR (dB) versus frame number using several methods for the Salesman sequence corrupted with a noise level of σ = 40. With no
background motion, RNLM with and without BMA perform about the same. VBM3D gives the best performance for this sequence
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Fig. 4 Comparison of denoised frame 92 from the Salesman
sequence with σn = 40. a Original frame. b Corrupted frame. c SNLM.
d BM3D. e VBM3D. f RNLM (BMA). The RNLMmethod appears to
preserve the background details better than the other methods

using SNLM. This method struggles to effectively han-
dle the high levels of noise. However, with decreased σn,
it tends to exhibit much better subjective visual perfor-
mance. Figure 4d is the BM3D denoised frame. While it
successfully reduces the noise, here, it produces an over-
smooth result and detail such as the mouth, eyes, and
texture of the original frame is lost. Figure 4e shows the
VBM3D denoised frame. This result does a good job with
noise reduction and some detail preservation. However,
it also tends to over-smooth texture in this image, such
as the plant leaves. Finally, Fig. 4f shows the output of
the proposed RNLM (BMA) algorithm. We believe that it

produces a visually pleasing result here, with a good bal-
ance of noise reduction and detail/texture preservation.

5 Conclusions
In this paper, we have presented a new temporally recur-
sive NLM algorithm for video denoising. The output of
the new RNLM method is a weighted sum of pixels from
the current noisy frame, and of a selected pixel from the
prior processed frame. This type of recursive process-
ing allows us to exploit temporal correlation with little
additional computational cost, compared with a SNLM.
We have explored two versions of the RNLM method
here, RNLM (BMA) that uses BMA for motion com-
pensation and RNLM (No BMA) that simply uses the
previous pixel at the same location to be included in the
weighted sum. The results also show that RNLM (BMA)
consistently outperformed the RNLM (No BMA). The
computational complexity of the RNLM (BMA)method is
approximately the same as 3D-NLMwith just two frames.
Both versions of RNLM method consistently outper-
form SNLM. Furthermore, our results show that RNLM
(BMA) is competitive with much more computationally
complex algorithms, such as BM3D and VBM3D. We
believe the proposed method offers a simple and practi-
cal video denoising solution, capable of balancing noise
reduction and detail preservation. Because of its low com-
putational cost, we believe it is well suited for real-time
implementation.
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