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Abstract

In this paper, we propose three new separable two-dimensional discrete orthogonal moments baptized: RTM
(Racah-Tchebichef moments), RKM (Racah-Krawtchouk moments), and RAHM (Racah-dual Hahn moments). We

present a comparative study between our proposed separable two-dimensional discrete orthogonal moments and
the classical ones, in terms of gray-level image reconstruction accuracy, including noisy and noise-free conditions.
Furthermore, in this study, the local feature extraction capabilities of the proposed moments are described. Finally, a
new set of RST (rotation, scaling, and translation) invariants, based on separable proposed moments, is introduced in
this paper for the first time, and their description performances are highly tested as pattern features for image
classification in comparison with the traditional moment invariants. The experimental results show that the new set of
moments is potentially useful in the field of image analysis.

Keywords: Separable discrete orthogonal moments, Moment invariants, Gray-level image reconstruction, Local
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1 Introduction

The theory of moments has been widely used in several
fields of image processing, such as image analysis [1-5],
image watermarking [6, 7], classification and pattern
recognition [8—10], and video coding [11, 12], with con-
siderable and important results. Historically, Hu in 1962
has presented a set of geometric moment invariants [1],
used particularly in pattern recognition. However, these
moments suffer from high information redundancy due
to their non-orthogonal property [13]. To overcome this
problem, Teague in 1980 has introduced a set of contin-
uous orthogonal moments [14], such as Zernike, pseudo-
Zernike, and Legendre moments. This set of moments has
been used as high discriminative features in many fields
[15]. Apart from their usefulness and wide applicability,
the computation of continuous orthogonal polynomials
involves two major inconveniences: discrete approxima-
tion of the continuous integration and discretization of
the continuous space [14]. Nevertheless, to overtake this
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problem, a new set of discrete orthogonal moments has
been proposed. Mukundun in 2001 was the first who
introduced discrete Tchebichef moments in image anal-
ysis [16]. This study has initiated several other types
of discrete moments: Krawtchouk [17], Racah [18], and
dual Hahn [19].

The majority of continuous and discrete orthogonal
moments in 2D space have separable basic functions. This
property can be expressed as two separate terms by the
product tensor of two classical orthogonal polynomials
with one variable [10]. Zhu in [20] proposed a set of
bivariate discrete and continuous orthogonal polynomi-
als in order to define a series of new set of separable
orthogonal moments. In this study, the author cites differ-
ent application in image analysis, such as reconstruction
of noisy and noise-free image, local feature extraction,
and object recognition using the invariant geometric
moments. Hmimid et al. in [10] introduced a new set of
separable orthogonal moments based on the product ten-
sor of Meixner polynomials by Tchebichef, Krawtchouk,
and Hahn polynomials; this study focuses on the classifi-
cation performance of geometric invariant moments.
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In this paper, firstly, we introduce a new set of bivariate
orthogonal polynomials, obtained by the product ten-
sor of Racah polynomials defined on non-uniform lattice
by Tchebichef, Krawtchouk polynomials, both defined on
uniform lattice, and dual Hahn polynomials defined on
non-uniform lattice. Using this new approach, we gen-
erate three separable 2D discrete orthogonal moments:
RTM, RKM, and RdAHM. Secondly, we provide the the-
oretical background for deriving their corresponding
RST invariants RTMI (Racah-Tchebichef moment invari-
ants), RKMI (Racah-Krawtchouk moment invariants),
and RAHMI (Racah-dual-Hahn moment invariants) with
respect to rotation, scaling, and translation transforms.
Finally, we evaluate the performance of this new set
of separable discrete orthogonal moments and moment
invariants in the field of image analysis, specifically in
image reconstruction, local feature extraction, and image
classification.

To demonstrate usefulness of the proposed moments
in image analysis, their accuracy as global descriptors is
assessed by reconstructing the whole gray-level images.
We then compare the results with the most used discrete
orthogonal moments in the literature; our goal is to evalu-
ate the combination of the three polynomials (Tchebichef,
Krawtchouk, and dual Hahn) with Racah polynomials.
Also, our study investigates the robustness of the pro-
posed moments against different types of noise. Besides,
it should be highlighted that the locality parameter p of
Krawtchouk polynomials has been depicted in order to
introduce the local feature extraction of the two pro-
posed separable orthogonal moments RKM and KRM
(Krawtchouk-Racah moments), which provide the oppor-
tunity to extract a specific ROI (region of interest) of
an image.

In the last decades, moment invariants have been exten-
sively studied and widely applied in image analysis and
pattern recognition, since they can extract shape fea-
tures independently of geometric transformation. In this
context, only few papers are published with the aim to
construct separable moment invariants for object recog-
nition and image classification [10, 20]; however, all these
introduced works focus on the generation of separable
moment invariants from bivariate polynomials defined
only on uniform lattice. To the best of our knowledge,
no such paper has been published in order to derive
RST separable 2D moment invariants based on bivariate
polynomials, which defined as a combination of polyno-
mials of uniform and non-uniform lattice. Our objective
is to extend the derivation process of moment invari-
ants to include bivariate polynomials defined on dif-
ferent lattices (uniform and non-uniform lattice) and
evaluate their performances in a real image classifica-
tion problem in comparison with the traditional moment
invariants.
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As a summary, the main contributions of our work
include the following aspects: (1) The proposition of
a new set of bivariate discrete orthogonal polynomials
based on the product tensor of Racah polynomials defined
on non-uniform lattice by Tchebichef and Krawtchouk
polynomials, both defined on uniform lattice, and dual
Hahn polynomials defined on non-uniform lattice. (2) The
application of the proposed methods in the field of image
reconstruction, in the case of noisy and noise-free gray-
level images. (3) The introduction of local feature extrac-
tion by specific separable discrete orthogonal moments
i.e. RKM and KRM. (4) The proposition of new sets
of moment invariants for object recognition and image
classification.

The rest of this paper is structured as follows. In
Section 2, we discuss the known classical discrete orthog-
onal polynomials of one variable; this set of orthogonal
polynomials serves as basic background for the rest of this
work, followed by the introduction of the new proposed
separable discrete orthogonal moments. In Section 3, we
introduce their RST invariants. Results and discussion
are provided in Section 4 to demonstrate their perfor-
mance in image reconstruction, local feature extraction,
and image classification. In conclusion, a brief summary
and the future work are presented.

2 Methods

2.1 Discrete classical orthogonal polynomial

In this section, we include a brief presentation of the most
used discrete orthogonal polynomials. This will consti-
tute a theoretical background for the rest of our work.
For that, the definition of Tchebichef polynomials is firstly
provided, followed by Krawtchouk, dual Hahn and Racah
polynomials. For more details, all these polynomials are
described in [16-19].

2.1.1 Tchebichef discrete orthogonal polynomial
Mukundun et al. in [16] have presented their approach
to compute discrete Tchebichef orthogonal moments. For
that, the following formula expresses the nth order of
classical Tchebichef polynomials:

tw(t; N) = (1 —N)nzFb(—n,—x,14+n1,1—-N;1), n,x,y
=01,...N—1.
(1)

Note that 3F; represents the generalized hypergeomet-
ric function defined as follows:

2\ [ (@) (@) (as) ik
F b ) ;b ,b; = T e~ o1~ 1 < )
32(, 4z, a3 00, 723%) g( KD BBk )

(2)
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and (a) expresses the Pochhammer symbol defined as
follows:

@r=a@+D@+2)...a+k—1)

I'(a + k 3)
= M,kg 1, andag = 1.
I'(a)
where I'(+) is the Gamma function.
As known, the set of Tchebichef polynomials {z,(x, N)}
satisfies the orthogonality property:

N-1

D Wity (3 N) by (6 N) = i1, N) s %, 1, m

x=0 (4)

=01..,.N—-1;N>0
with respect to the weight function w; = 1 and the
squared norm
N+n
,N) = 2n! 5
p(n,N) n<2n+1> (5)

In order to avoid numerical instability of classical
Tchebichef polynomials caused by the hypergeometric
function in Eq. (1), a set of normalized Tchebichef polyno-
mials has been introduced by Mukundan et al. in [16] by
the following formula:

Ly (6 N)
B(n,N)’

where B(n, N) is a suitable constant which is independent
of x, as given in [16] by

=V p(nN). (7)

In order to decrease the high computation cost of
Eq. (6), the authors in [16] have mentioned a recursive for-
mula of the normalized Tchebichef polynomials denoted
by

(5 N) = (6)

B(n,N)

Zn(x;N) =
@ — DB (6 N1 (5 N) = 1= 1) (1= 252 ) Bua i)
n (8)

fo(x;N) =1,
2%x+1—N

ti(xN) = N

2.1.2 Krawtchouk discrete orthogonal polynomial

The Krawtchouk discrete orthogonal polynomials have
been introduced by Mikhail Krawtchouk in [21] and used
for the first time in image analysis by Yap et al. [17]. These
polynomials are defined as follows:

N
1
kn(x; p, N) = Zﬂk,n,pxk = oF (—n, —x; —N;p>,
k=0

)
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where x,n = 0,1,,N, 0 < p < 1 and »F) express the
hypergeometric function defined as follows:

Z (@) (b)*
kl@©r

The Krawtchouk polynomlals satisfy the following
orthogonality condition:

oF1(a,b;c;2) = (10)

N-1

> w6 p, Nk (@ 9, N) ki (3. p, N) = pi (15,0, N8 1, 11
x=0

=1,...,N.
(11)
Giving that wi(x; p, N — 1) is the weight function denoted
by
N-—-1 1
Wil p, N — 1) = ( )pxa -pNT (1)
and the squared norm is
1-p\" =«
pk(mp, N — 1) = (=1)" ( ) . (13)
K p ) Q=N

In order to avoid numerical instability of classical
Krawtchouk polynomials caused by the hypergeometric
function, a set of normalized polynomials of Krawtchouk
has been mentioned in [17] by the following formula:

Fo 50, N—1) = (o, N— 1) [ KL N =D - g
ox(mp, N — 1)

In our study, we use the recursive formula presented by
Yap et al. in [17] denoted by

N —1) = Apky—1(x;p, N — 1) — Bukn_o(x; p, N — 1),

-1,

kn (23 p,

kox;p, N — 1) = wi(x; p, N (15)

N—-1p—x

ko(;p, N — 1) = wp(;p, N — 1) e,
vVIN —Dp( - p)
with A, = W=lp=2n—Dpin-1-x) and B, =

A/P(1=p)n(N—n)
(n—1)(N—n+1)
(N—n)n :

2.1.3 Dual Hahn discrete orthogonal polynomial
The dual Hahn polynomials have been introduced in
image analysis by Zhu et al. in [19]. This family of discrete
orthogonal polynomials is defined on the non-uniform
lattice.

The nth order is given by

(a—b+1Dya+c+1),
n!
x sB(-ma—s,a+s+La—b+1l,a+c+1;1),
(16)

an'9(s,a, b) =

where the parameters a, b, ¢, n, and s are restricted to

—l<a<bb=a+N, || <a+1,n=0]1,..N-1,
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and s = a,a+ 1,...b — 1. Also, 3F, is the generalized
hypergeometric function given in Eq. (2). The dual Hahn
polynomials satisfy the following orthogonality property:

b—1

Z Wdn(s) [AX <s - )] dh(c) (s, a, b)dh(c) (s,a,b)

S=a
= Pdh(")8pm;0 < nm, m <N —1,
(17)

where AX(s) = X(s+ 1) — X(s), with X(s) = s(s + 1) and
Wdh, is the weight function :

Fa+s+ DI (c+s+1)
Fs—a+ DG-GB +s+Dl(s—c+1)
(18)

Wdh(s) =

and the square norm is given by the following formula:

Fa4+c+n+1)

,n=0,...,
nb—a—n—ND'TMbB-c—n) "

Pdh(n) =
(19)

To avoid numerical instability in polynomial compu-
tation, the dual Hahn polynomials are scaled by using

the square norm and the weighting function. The set of
normalized dual Hahn polynomials is defined as follows:

dh(ﬁ) (s,a,b) = dh}(f) (s,a,b) M |:AX (S _ 1)]’
Pdh (1) 2

n=201,...,N—1.

(20)

In order to decrease the computational cost in Eq. (16)
based on generalized hypergeometric function, we use the
recursive formula with respect to n proposed by Zhu et al.
in [19] that is denoted by the following formula:

Pdr(m — 1) ()

a0 (s,a,b) = A dh? (s, a,b)
Pdn(n)
pdn(m — 2) —()
- < h bl ’
odn(n) ~2(6ab)
& (s, a,p) = | a0 [AX (s - 1)]
0dn(0) 2
——(0) 1 wi(s) —wi(s — 1)

dhy (5,0 0) =  Wan(9) X (s+3)-

[
Pdn(1) 2

(21)

N-1.
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where:
1
=7[s(s—|—1)—ab—i—ac—bc—(b—a—c—l)(Zn—l)
n
+2(n — 1)%],
1
B=——-(@a+c+n—-1)b—-—a—n+1)b—c—n+1),
n

and
lNa+s+n+DI'(c+s+n+1)
Fs—a+DLb—s—mlb+s+D0(s—c+1)

wy(s) =

2.1.4 Racah discrete orthogonal polynomial

In this subsection, we will present the Racah polynomi-
als defined in the non-uniform lattice. This set of discrete
orthogonal polynomials has been firstly used in image
analysis by Zhu et al. in [18], where the nth order of Racah
polynomials are defined as follows:

@a—=b+1),B+Dua+b+a+1),
n!
X 4F3(—ma+B+n+1l,a—
+LB84+la+1—ba+b+a+1;1),
(22)

rff"ﬂ) (s,a,b) =

S,a+s

where the parameters a, b, «, 8, n, and s are restricted to
—l<a<ba>-1,-1<B<2a+1Lb=a+N,
n=01,...n—1,and s=a,a+1,...,b—1and 4F3 is

the generalized hypergeometric function given by

o0
4F3(a1, az, az, as; by, b, b3; 2) =Z
k=0

(@) (@) (as)(aa)kz"
KD GDKB)k b3k |-

(23)

The Racah polynomials satisfy the following orthogo-
nality property:

b
1
Z wy(s) |:AX (s — 2>:| rﬁl“’ﬂ)(s, a, b)rﬁfl"ﬂ)(s, a, b)

= pr(M)8ym; 0 <m, m <N —1,
(24)

where AX(s) = X(s+ 1) — X(s), with X(s) = s(s + 1) and
Wy, is the weight function:

wr(s) =
Fra+s+DHI's—a+B+Dla+a—s)T'b+a+s+1)
FTa—B+s+DI's—a+ DI G- +s+1)

’

(25)
and the square norm is given by the following formula:
Fa+n+1DI'B+n+1DIb—at+a+B+n+1)
a+B+2n+1n!lb—a—n—DT(a+B+n+1)
Fra+b+a+n+1)
Fa+b—pB—n)

or(n) =

, n=01,...,N—1.

(26)
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To avoid numerical instability in polynomial computa-
tion, the Racah polynomials are scaled by using the square
norm and weighting function. The set of normalized
Racah polynomials is defined as follows:

75,“"3)(& a,b) = rﬁ,"’ﬂ)(s, a,b) wr(s) |:AX (s — 1)i|,
or(n) 2

n=01...,N—1.

(27)

In order to reduce the problem of high computation cost
of Racah polynomials using Eq. (22), we use the recursive
formula with respect to n proposed by Zhu et al. in [19],
which is denoted by the following formula:

A,,?ﬁ,“’ﬁ)(s, a,b) =B, M (a ﬂ)(s, a, b)
pr(1)
e pr(n—2) (aﬂ)(s’a b,
pr(n)
_(@p) _[we(s) 1
7o “%“‘/mmJ}XG 2”’

1 wi(s) —wi(s—1)
wr(s) X(s + 3) = X(s — 3)

)
pr(1) 2

nlae+ B +n
(¢ +B+2n—1)(x+B+2n)
@+b*+@—p*+b+a)?-2)
4
(x+pB+2n—2)(ax+B+2n)
+ 8

B - [(b +4)" = (a- “5)2]

2@+ B+2n—2)(+B+2n)

2
. _ (@+n—1B+n—1) [( o ﬂ)
2+ B +2n—2)(a+ B+ 2n) 2

S | (G )
o]

PP (s,a,b) = —

(28)

where:

n=

B, =x —

and

Wi (s) =
Ta+s+n+DIs—a+B+n+1DFb+a—s)T'b+a+s+n+1)
Fa—B+s+ Dl s—a+DHI'b—s—nm)'(b+s+1)
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2.2 Proposed new separable orthogonal discrete
moments

This section is devoted to present a new set of bivari-
ate discrete orthogonal polynomials, using the classical
polynomials cited previously. Inspired from the method
proposed by Xu in [22, 23], we can produce new sev-
eral bivariate discrete orthogonal polynomials based on
the product tensor of Racah polynomials with Tchebichef,
Krawtchouk, and dual Hahn polynomials; the list of this
new series is presented in the following subsections.

2.2.1 Separable Racah-Tchebichef orthogonal discrete
moments

The product of Racah and Tchebichef discrete orthog-
onal polynomials defined on uniform and non-uniform
lattice 7, ry, @p )(S, a, b) and t,,(y; N) is given by the following

formula:
RT,(lf‘y;ﬁ) (s,y,a,b,N) = 751“”3) (s,a,b)t,,(y; N),

(29)
0<mn, m<N—1.

These proposed polynomials are orthogonal on the set
= {(,)) : 0 < i,j < N — 1}, with respect to the weight
function, that is defined as follows:

wP (s,y,a,b,N) = w*P (s,a,b, N)yw; (s, N)  (30)

With these bivariate orthogonal polynomials, the gen-
eral computation of RTM, from an N x N image having
intensity function f (s, y), is defined as follows

b—1 N
RTMym =

¥, a, b, N)f (s,9).

S=i ay—
(31)

An approximation of the original image can be recon-
structed, using a finite number of computed Racah-
Tchebichef moments up to a specific order #max, by
applying the inverse moments formula, that is defined as
follows:

HMmax Mmax
> Y RTP(s,5,4,b, N)RTM;;.
i=0 j=0

fsy) = (32)

2.2.2 Separable Racah-Krawtchouk orthogonal discrete
moments
The products of the Racah and Krawtchouk polynomials

defined on non-uniform and uniform lattice 7 ’(a p) (s,a, b)

and k,(x; p, N — 1), respectively, are defined as follows:
RK %P (s,y,a,b,p, N) = 7P (s,a, b)k,(y;p, N — 1),
0<mm<N-—1.
(33)

Similarly, they are orthogonal on the set V' = {(i,)) :
0 < i,j < N — 1}, where the weight function is defined as
follows:
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wP (s,9,a,b,p,N) = w'P) (s, a, b, N)wy(y; p, N)
(34)
With these bivariate orthogonal polynomials, the gen-

eral computation of RKM from an N x N image having
intensity function f (x, y) is defined as follows:

b—1 N
RKMym = Y > RKSH (5,9,a,b,p, N)f (5,5).  (35)
s=a y:l

The reconstruction of the image function using a finite
number of computed Racah-Krawtchouk moments up to
a specific order #max can be done by applying the inverse
moments formula that is defined as follows:

HMmax Mmax

Fen =3 RKP(s,5,a,b,p, N)RKM;.
i=0 j=0

(36)

2.2.3 Separable Racah-dual Hahn orthogonal discrete
moments
The products of Racah and dual Hahn polynomials,

both defined on non-uniform lattice 753"3 )(s, a,b) and

%ﬁf) (t,a, b), respectively, are defined as follows:

RAHSH9) (5,5, a,b, p, 9, N) =F &P (s,a, b)dhy, (8, 1, 9,
0<m m<N-—1.
37)
Consequently, these proposed polynomials are orthog-

onal on theset V = {(j,j) : 0 < i,j < N — 1}, with respect
to the weight function, that is defined as follows:

w9 (5,3, a,b, 1,9, N) = WP (5,4, b, NywSi) (6, 11,9, N) =
(38)

With these bivariate orthogonal polynomials, the gen-
eral computation of Racah-dual Hahn moments from an
N x N image having intensity function f (s, ¢) is given by

b—1v9-1
RAHM,y = Y > " RAHH (5,8, a, b, 11,9, N)f (s, £).
s=a t=[

(39)

The reconstruction of the image function can be carried
out, using a finite number of computed Racah-dual Hahn
moments (RAHM) up to a specific order #max, by applying
the inverse moments formula as follows:

Mmax Mmax
fsy="" > RAHEF(s,t,a,b, 1, , N)RAHM;;.
i=0 j=0
(40)
When nmax = N — 1, The reconstructed image using
the computed Racah-Tchebichef, Racah-Krawtchouk and
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Racah-dual Hahn moments, by applying Eqs. (32, 36, 40),
can be optimal with a minimal reconstruction error.

3 Momentinvariants
The usual method for obtaining RST invariants is to
express the image moments as a linear combination of
geometric ones and then makes use of RST geometric
invariants instead of geometric moments.

The geometric moments G, of an image with the
size N x M pixels are defined using the discrete sum
approximation as follows:

N—-1M-1

Gum = Z Z £y f (%, 9).

x=0 y=0

(41)

And the translation invariants of geometric moments
Uy are defined by

N—-1M-1
Uym = (= X)"( = )"f (). (42)
x=0 y=0
withx = g—(l)g andy = %8(1)

Then, the GMI (geometric moment invariants) of order
n + m, noted Vp,,, which is independent of rotation,
scaling, and translation, can be written as follows:

N—-1M-1 _ _
oy [(x — X)cos® + (y — y)sin6]"
Vim =Goo J;) ygo [x[(y — ¥)cosh — (x —Jc)sine]’"j|f(x’y)'

(43)

with y = ”JFT”’ +1land@ = %tan_1 (u;{l&w).

3.1 Separable Racah-Tchebichef moment invariants
Similar to the presented methodology in [24], where the
authors proposed a generalized expression of the dual
Hahn polynomials (defined on the non-uniform lattice) in
terms of monomials x”. The nth order of discrete Racah
polynomials can be written as follows:

n 2t
r,ga’ﬂ)(S; ab) = Rgx,ﬂ)(a, b) ZB;‘;:ﬂ)(a, b) Z Crx”
=0 r=0
(44)

where Ri,“‘ﬁ)(a,b) _ (“_b+1)”(ﬂ+1),”(“+b+“+l)”,B,(ﬁ,;ﬂ)(a,b) —

() (@+Bnt1)u(—1)" "
B+ m(a—b+1)y(a+b+a+1),m!’




Batioua et al. EURASIP Journal on Image and Video Processing (2017) 2017:20

Cion—1)(—2)+lam — (m — 1)]
XCin-1)(r—1) — M — DamCon—1yr Ym > 2,2 <r <2m —2

Con—1)@m—3)+am — (m — 1)] Vm > 2,r=2m—2
Comr= Con-1)2m-3)
+a; — (m— l)amC(m,1)1 Vm>2,r=1
Vm > 0,r =2m
0 Vm=>1r=0

(45)

and Cpo = 1, C19 =
a, =2a+n.

From the work [16], Tchebichef polynomials can be
rewritten in the form:

0, C11 = a1, and Cip = 1 with

n

B(n,N) —

t
Bu(N) Y s(t,r)x”

r=0

1,5 N) = (46)

~ 1= Ny (=1 (1) (— 1) ~
with B,,(N) = 4= ((k!)g)(l(_;)’z D7 and s(t,r) is

the Stirling numbers of the first kind, obtained by the
following recurrence relations:

stt,ry=s(t—1,r—1)—(t—-Ds(t—1,r),t>1,r>1,
(47)

with s(¢,0) = s(0,r) = 0 and s(0,0) = 1.

The Racah and Tchebichef polynomial expansions given
in Egs. (44) and (46) are useful in writing the Racah-
Tchebichef moments in terms of geometric moments;
hence, the RTM of an image f(x,y) can be expressed as
follows:

R(a B) (61, b) (@p) 2k
pr(MB(,N) £ ZB @b ;0 Cat

Z Byt (N) Z 5(t,1)Gor
t=0 r=0

RTM, =
(48)

where p,(n) and B(n, N) are the normalization constants
of Racah and Tchebichef polynomials relative to Eq. (26)
and Eq. (7), respectively.

Finally, in order to compute the RTMI of n+m order, the
geometric moments G, in the previous equation can be
replaced by V,, geometric moment invariants as follows:

R(aﬂ)(ﬂ b) (@) 2k
por(mB(n,N) £ ZB @ ’h@@k

Z Byut(N) Z $(t, 1) Ver
t=0 r=0

RTML,,, =

(49)
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3.2 Separable Racah-Krawtchouk moment invariants

As presented in [17], the Krawtchouk polynomials
kq(x;p, N) can be expressed as a polynomial of x as
follows:

n n t
kn( 0, N) =" apnpd® =D Qup,N) Y s(t,r)x”
k=0 t=0 r=0
(50)
t
with Qs (p, N) = 1\;'));):, (_—) , and s(z,r) is the Sterling

number of the flrst kind from Eq. (47).

Basically, from Eq. (44) and Eq. (50), the RKM of
an image f(x,y) can be written in term of geometric
moments G, as follows:

R @h) e, e
RKM,,;, = B (a, b) C
pr(mpi(n,p, N) £ Z ; 8
Z Qumt(p, N) Z s(t, )Gy
t=0 r=0

(51)

where p,(n) and pg(n, p, N) are the normalization con-
stants of Racah and Krawtchouk polynomials relative to
Eq. (26) and Eq. (13), respectively.

Eventually, by replacing G, by V,, in Eq. (51), we obtain
the RKMI of order #n + m:

K@) O =
RKMI,yy = —————~—%"B " (a,b) ) " C
" pr(n) px(n, p, N) Z nk ; *
Z Qe (P, N) Zs(t r)Ver
r=0

(52)

3.3 Separable Racah-dual-Hahn moment invariants
As demonstrated in [24], the nth order of dual Hahn poly-
nomials can be represented as polynomial of x” as follows:

DH (1, 9) = R (1, 9) ZB@ (9 Z Cux’ (53)
t=0 r=0

B () =

Vn > 0,0 < m < n with

where R (11, ) %

() —m+1
Be—1) (1 0) G5 mny atcrmym?
By (,9) = 1.

And Cy is given by the Eq. (45) with a,, = 2 + n.
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Therefore, the RAHM of an image f(x,y) can be
expanded in terms of geometric moments as follows:

n

(@,B) (©) 2k

RyP (@, )RS (11,9 @

RAHM,,, = X @ORn UL D) 5~ g 4y S ¢y
or (1) pap (1) o =

m 2t
Y B )y CuGar
t=0

r=0
(54)

where p, () and pgy, (1) are the normalization constants of
Racah and dual Hahn polynomials relative to Egs. (26) and
(19), respectively.

Finally, in order to compute the RAHMI of order #n + m,
the geometric moments G, in the previous equation can
be replaced by the geometric moment invariants V,, as
follows:

n

(a,8) (©)
R (a, )RS (1, 9) ,
2 i > " B (a,b)

RdHMI,,,,, =
" pr(mpan(n) =
2k m 2t
Z Cuk Z B;(/Zl(,u; 0) Z Cer Var
z=0 t=0 r=0

(55)

4 Results and discussion

In this section, several experimental results are provided
to validate the theoretical study of our new separable
discrete orthogonal moments developed in the previous
sections. This section is presented through four subsec-
tions. In the first subsection, the reconstruction capability
of the whole noisy and noise-free image is addressed.
The experimental study on the local feature extraction
has been depicted in the second subsection. Then, the
invariability of the proposed moment invariants is exam-
ined under different geometric transforms and their noise
robustness are also investigated. Finally, in the fourth sub-
section, image classification accuracy is presented with a
comparison between the new sets of separable moment
invariants and the existing ones.

A set of eight images having different natures, as shown
in Fig. 1, is used as test images in our experiments.
All images are standard test image from the waterloo
image repository database (http://links.uwaterloo.ca/
Repository.html), unless texture image which has been
chosen from Multi Band Texture database (http://
multibandtexture.recherche.usherbrooke.ca/normalized_
brodatz.html), and the duck image that has been used
by Zhu in [20] for local feature extraction. Furthermore,
the Butterfly 37 image is chosen from Butterfly database
and used for invariability testing. In addition, three
well-known image databases Caltech-101 [25], Corel [26],
and Outex (http://www.outex.oulu.fi/) are introduced in
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order to demonstrate the image classification accuracy of
the new proposed invariants.

4.1 Global features reconstruction

In this subsection, the global feature extraction capability
of the proposed moments is evaluated by the reconstruc-
tion of the whole image. For that, we present some criteria
commonly used for measuring image quality reconstruc-
tion. In fact, we use MSE (mean squared error) and PSNR
(peak signal-to-noise ratio) to quantitatively measure the
fidelity of the decoded images. The PSNR of a gray-level
image of size N x N is defined as follows:

PSNR = 10/ Max*
- OgIO MSE )

where Max is the peak image amplitude and equal to 255
for gray-level images and MSE value is defined as follows:

(56)

1 N N .
MSE = 5> D [y —f@P?, (57)

x=1y=1

with f(x,y) and f (x,y) denote the original and the recon-
structed image, respectively. In order to complete this
comparison, another measure index has been used in the
current work. This index is called SSIM (Structural SIMi-
larity) that attempts to measure the change in luminance,
contrast, and structure between two images. The SSIM
has been firstly presented by Z. Wang in [27].

The proposed methods are expected to achieve a bet-
ter estimation of original image using only a few number
of moments, which should minimize the MSE value, con-
versely maximize PSNR value. Moreover, the SSIM index
is used to evaluate the preservation of structural informa-
tion in the reconstructed image. In this case, we expect
that we obtain high SSIM values that indicate better
reconstruction performance.

So as to exhibit a global comparison between different
set of proposed separable discrete orthogonal moment,
the Krawtchouk p parameter is restricted on 0.5, to obtain
a global reconstruction taken from the image center, as
presented by Yap et al. in [17]. While the dual Hahn
parameters are restricted on u = 8, ¥ = N + u, and
¢ = —8, Racah parameters are restricted on a = 256,
o =256, =160,and b = N + a.

To evaluate the global features extraction, we use Lena,
Man, and Texture images with size 64 x 64. Figure 2 shows
the reconstruction results of Lena image for the three
proposed methods (RTM, RKM, RdHM) with different
orders: 60, 80, 100, and 120. It is clearly seen in Fig. 2 that
the quality of the reconstructed image becomes closer to
the original image for higher orders.

To further illustrate the performance of different meth-
ods in terms of image quality reconstruction, Fig. 3


http://links.uwaterloo.ca/Repository.html
http://links.uwaterloo.ca/Repository.html
http://multibandtexture.recherche.usherbrooke.ca/normalized_brodatz.html
http://multibandtexture.recherche.usherbrooke.ca/normalized_brodatz.html
http://multibandtexture.recherche.usherbrooke.ca/normalized_brodatz.html
http://www.outex.oulu.fi/
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and Tables 1, 2, 3 depict a comparison, based on MSE,
PSNR, and SSIM index, between our proposed moments
(RTM, RKM, and RAHM) and the classical known discrete
moments. As a result derived from the above experiments,
we can deduce that the reconstructed image by the RKM
is closer to the original image especially for high orders
and perform better starting from the order 88. More-
over, the most important result presented in Fig. 3a, b,
c and Tables 1, 2, 3 is that RTM gives satisfying results,

in terms of reconstruction accuracy, for lower and higher
order moments in comparison with other methods. In
fact, these results obtained by RTM are justified by the
combination of the property of better reconstruction for
lower order guaranteed by Tchebichef moments [16] with
the good quality reconstruction for higher orders obtained
by Racah moments [18].

In Fig. 4, we compare the reconstruction quality of the
proposed moments (RTM, RKM, and RAHM) with the

Original Lena image

Methods

Orders

100

RTM

RKM

RdHM

Fig. 2 Reconstruction of Lena image by using our proposed methods, the orders from left to right are 60, 80, 100, and 120, respectively
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Fig. 3 Comparative analysis of reconstruction errors (MSE) using RTM, RKM, RAHM, TTM, KKM, dHdHM, and RdHM for a Lena, b Man, and ¢ Texture images

existing moments (TTM, KKM, dHdHM, and RRM) using
the same test images presented above and a reconstruc-
tion order fixed on 110. As can be seen from the figure,
the reconstructed images show more visual resemblance
to the original images; also this experiment can depict the

Table 1 Comparative results in terms of PSNR (db) and SSIM values of test images (Lena)

capability of the proposed discrete orthogonal moments
in the global feature extraction.

As a main conclusion of these experiments, the pro-
posed RTM and RKM perform competitively with other
methods in terms of gray-level image representation

PSNR and SSIM’s values of Lena image

Orders RT™M RdHM RKM ™ dHdHM RRM KKM

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
0 8.00 0.04 5.87 0.01 6.16 0.02 14.11 0.11 5.86 0.00 6.14 0.03 6.08 0.00
6 8.88 0.04 6.31 0.04 6.64 0.03 15.12 0.14 6.50 0.04 6.53 0.01 6.63 0.05
18 11.69 0.30 8.37 0.19 8.63 0.17 16.91 0.26 8.56 0.18 8.79 0.22 8.34 0.18
26 13.30 0.38 9.87 0.27 10.24 0.30 18.08 041 10.09 0.27 10.25 0.30 9.81 0.22
38 15.94 048 13.61 047 1333 0.45 19.31 0.53 14.91 0.50 13.26 044 13.40 0.51
72 2268 0.80 21.90 0.77 2269 0.80 22.26 0.75 21.77 0.77 2236 0.79 2294 0.80
78 2292 0.81 2257 0.79 2343 0.82 22.79 0.78 22.24 0.79 2332 0.81 2357 0.83
88 2445 0.84 23.50 0.83 24.55 0.85 24.05 0.83 23.02 0.82 24.55 0.85 24.65 0.86
92 2577 0.88 2394 0.84 2503 0.86 24.59 0.86 2346 0.83 25.02 0.86 25.16 0.87
98 26.86 0.92 2445 0.86 26.05 0.89 25.73 0.89 23.99 0.85 25.99 0.88 2593 0.89
108 2897 0.94 2558 0.89 28.16 0.93 27.81 0.93 2492 0.87 28.24 093 27.76 093
112 29.90 0.96 26.28 0.90 29.55 0.94 29.58 0.95 25.64 0.88 29.58 0.94 2891 0.94
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Table 2 Comparative results in terms of PSNR (db) and SSIM values of test images (Man)
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PSNR and SSIM's values of Man image

Orders RT™M RdHM RKM ™ dHdHM RRM KKM

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
0 8.62 0.04 6.56 0.00 6.85 0.00 14.20 0.08 6.63 0.01 6.88 0.00 6.72 0.00
6 9.92 0.07 7.28 0.06 7.60 0.02 15.36 0.1 7.03 0.01 767 0.05 751 0.04
18 11.82 0.30 9.35 0.26 10.01 0.19 16.99 0.20 8.89 0.15 10.16 0.25 9.87 0.22
26 13.20 0.39 11.01 0.28 11.75 0.35 1791 0.29 1143 0.29 11.70 033 11.48 0.34
38 15.58 0.44 14.45 044 14.34 0.51 19.22 047 15.78 046 14.16 048 14.05 0.51
72 22.15 0.74 21.40 0.73 21.82 0.76 21.80 0.71 2144 0.73 21.52 0.75 2222 0.77
78 22.65 0.76 22.02 0.76 22.63 0.78 2244 0.76 21.81 0.75 2244 0.78 22.85 0.79
88 23.90 0.83 23.04 0.80 23.70 0.83 23.56 0.82 2244 0.78 23.79 0.83 23.81 0.83
92 24.19 0.85 2341 0.82 2417 0.85 24.14 0.84 22.78 0.80 24.28 0.85 24.29 0.85
98 25.26 0.88 2396 0.84 25.05 0.88 2497 0.87 23.27 0.82 25.16 0.88 24.99 0.87
108 2752 093 25.14 0.87 26.64 0.91 26.88 0.92 24.15 0.85 26.80 0.92 26.73 091
112 28.23 0.95 25.86 0.89 27.66 0.93 27.81 0.94 24.73 0.86 27.80 0.93 27.82 093

capability that can justify their usefulness as a global
descriptors in the field of image reconstruction, in other
hand, the proposed RAHM does not perform well in these
experiments.

4.2 Robustness to different kind of noises

The robustness and sensitivity to noise are generally con-
sidered as essential indicator for image moments. In order
to evaluate the robustness of our proposed separable
orthogonal discrete moments against different kind of
noises, we use three original gray-level images (Camera-
man, Pepper, and Mandrill) corrupted by Gaussian and
salt-and-pepper noise. Figure 5 depicts the reconstructed
noisy images using RTM, RKM, RdHM, and RRM, with
order up to 100. Firstly, the original images are corrupted

by Gaussian noise with zero mean and variance (v = 0.01)
as shown in the first three columns of Fig. 5. Secondly, the
effect of salt-and-pepper noise with the density of 3% is
displayed in the last three columns of Fig. 5.

Table 4 presents comparative results between our pro-
posed moments and Racah moment for different noisy
images in terms of PSNR values. Based on the results pro-
vided by Table 4 and Fig. 5, it can be concluded that our
proposed orthogonal moments are less sensitive to the
noisy effects.

4.3 Local feature extraction by RKM and KRM discrete
orthogonal moments

In the following experiments, we will investigate the capa-

bility of the proposed KRM and RKM to capture the

Table 3 Comparative results in terms of PSNR (db) and SSIM values of test images (Texture)

PSNR and SSIM’s values of Texture image

Orders RT™M RdHM RKM ™ dHdHM RRM KKM

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
0 7.20 0.01 5.14 0.00 5.36 0.00 11.55 0.01 5.08 0.00 537 0.00 534 0.00
6 7.98 0.01 555 0.00 5.86 0.00 11.83 0.01 551 0.00 5.88 0.01 578 0.00
18 10.72 0.02 6.94 0.01 7.34 0.01 11.92 0.02 6.92 0.01 747 0.01 711 0.01
26 10.68 0.02 8.13 0.04 8.48 0.02 11.96 0.02 8.10 0.03 8.62 0.06 8.12 0.02
38 11.84 0.05 10.26 0.07 9.89 0.02 12.08 0.04 10.64 0.08 10.09 0.07 9.70 0.07
72 12.90 0.23 12.57 0.20 12.59 0.21 13.09 0.23 12.46 0.15 12.60 0.23 12.68 0.24
78 1391 0.29 12.76 0.24 12.87 0.28 13.31 0.28 12.60 0.19 12.90 0.29 13.18 0.34
88 13.98 041 13.62 043 13.98 0.46 1391 0.40 13.24 0.35 13.79 045 14.01 047
92 14.34 049 14.09 0.51 14.25 0.51 14.24 046 13.39 0.37 14.31 0.54 14.21 0.50
98 15.13 0.62 14.79 0.59 14.93 0.59 14.78 0.54 13.74 043 15.10 0.62 14.88 0.58
108 18.96 0.87 17.80 0.83 19.27 0.88 1741 0.78 14.31 0.52 18.93 0.87 19.19 0.88
112 20.52 0.92 18.54 0.86 20.34 0.91 19.61 0.88 14.64 0.55 19.76 0.90 20.38 0.91




Batioua et al. EURASIP Journal on Image and Video Processing (2017) 2017:20

[mages
Methods :
Lena Man Texture
Original Images ii' :
E =
RTM
RKM
RAHM ;
RRM é
£
TTM
KKM
dHdHM
Fig. 4 Reconstructed images using RTM, RKM, RdHM, RRM, TTM, KKM,
and dHdHM, the orders of reconstruction is fixed to 110

local information of an image. This study is based on the
ability of Krawtchouk moments to extract the local fea-
ture by adjusting the p parameter [17, 20]. This property
can be very useful in the context of pattern classification
in order to extract and recognize a part of scene contain-
ing a specific object to classify [28]. Therefore, we focus
in this subsection on the choice of adaptable parameters
for the proposed separable discrete moments. In the case
of RKM, if we set the parameters p = 0.1,a = 0, b = N,
a = 0,and B = O, then, the region of interest will be
extracted horizontally from left to right on the top of an
image. If we set the parameters p = 0.9,a = 0,b = N,
a = 0,and B = 0, then, the region of interest will be
extracted horizontally from left to right on the bottom of
an image. If we set the parameters p = 0.5,a =0,b = N,
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a = 0, and B = 0, then, the region of interest will be
extracted horizontally from left to right on the center of
an image. In the case of KRM, if we set the parameters
p=01,a=0b=N,a =0,and 8 = 0, then, the region
of interest will be extracted vertically from top to bottom
on the left of an image. If we set the parameters p = 0.9,
a=0,b=N,a =0,and B = 0, then, the region of inter-
est will be extracted vertically from top to bottom on the
right of an image. Finally, if we set the parameters p = 0.5,
a=0,b=N,a =0,and B = 0, then, the region of inter-
est will be extracted vertically from top to bottom on the
center of an image.

In the current study, the local feature of an image can be
easily extracted using the capability of Krawtchouk poly-
nomials to capture the ROI. This property is verified by
several reconstructions of duck image via RKM and KRM
with different parameter values, as shown in Fig. 6.

4.4 Invariability

In order to verify the rotation, scaling, and translation
invariance of the proposed two-dimensional separable
moment invariants RTMI, RKMI, and RAHM]I, the test
image Butterfly_37 of size 128 x 128, shown in Fig. 1,
is translated by vector varying from (—16, —16) to (16,
16) with step (2, 2), scaled by factors starting from 0.7 to
1.3 with step 0.05 and finally rotated by a rotation angle
varying between 0° and 360° with interval 10°. Then, the
moment invariant coefficients of each transformed image
are computed up to the 6th order (n + m < 6) using the
proposed separable moment invariants, and the relative
error of Eq. (58) between moment invariant coefficients of
the original image and the transformed one is computed.

. IMI(f) — MI(g)||
relativeError(f,g) = ————————=— (58)
v IMIG)]
where || - ||, f, and g denote the Euclidean norm, the orig-

inal and the transformed image, respectively, where low
relative error leads to good precision.

Figure 7a, b depicts the relative error of RTMI, RKM],
and RAHMI for scale and rotation transforms, respec-
tively. Although, moment invariant coefficients for all
translation vectors remain unchangeable that leads to
relative error equals to zero.

Furthermore, to understand the effect of noise on the
proposed moment invariants, in a similar way to the pre-
vious experiment, the test image has been corrupted by
different kind of noise. Firstly, distorted by different den-
sities of salt-and-pepper noise varying from 0% to 5% with
interval 0.25%, secondly, corrupted by Gaussian noise
with zero mean and standard deviation varying between 0
and 0.5 with step 0.05.

Figure 8a, b depicts the robustness of RTMI, RKMI,
and RAHMI against salt-and-pepper and Gaussian noise,
respectively.
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Gaussian noise (v = 0.01)
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maximum order up to 100
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Fig. 5 Image reconstruction of gray-level noisy image. The first three columns show the reconstructed images using Gaussian noise with zero mean
and v = 0.01. The last three columns show the reconstructed images using salt-and-pepper noise-contaminated images with density of 3%. With a

It is clear from Figs. 7 and 8 that the relative error
rate is very low (10719), which indicates that the pro-
posed moment invariants exhibit good performance and
express high numerical stability under different geomet-
ric transformations, as well as in presence of noisy effects.
Therefore, the new set of invariants can be very useful in
the field of pattern recognition and image classification.

4.5 Image classification
In this experiment, the classification accuracy of the
proposed separable moment invariants is verified by

using the three well-known image databases, is Outex
texture database (Outex_TC_00010-r) (http://www.outex.
oulu.fi/), and contains 4320 gray-level images of 24 tex-
ture class with 180 instance per class. Moreover, Outex
database offers several variations of acquisition conditions
(illumination, spatial resolution, and camera rotation),
where all images are of size 128 x 128 pixels. The sec-
ond database is Caltech-101 [25], which contains a total
of 8677 images, split between 101 distinct object cate-
gories, with from 40 to 800 images per category, each
image is about 300 x 200 pixels. Finally, the third database

Table 4 Comparative results of noisy image reconstruction in terms of PSNRs (db)

Gaussian noise (v = 0.01)

Salt-and-pepper noise (3%)

Cameraman Mandrill Peppers Cameraman Mandrill Peppers
Methods PSNR values PSNR values
RTM 20.2458 20.2244 20.8964 20.3689 204726 20465
RKM 20.1001 20.2059 20.7613 20.2028 205158 204371
RAHM 203312 20.2564 21.0734 204353 20.564 20.5085
RRM 20.2346 20.1725 20.8658 20324 20.4288 20.4396

The maximum order used is 100 for each method
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Fig. 6 Reconstructed images (threshold) up to order 66.a RKM (p = 0.1, a = 256, = 256, 8 = 160,and b = N + a), b RKM (p = 0.5, a = 256,
o =256, =160,andb=N+a),cRKM (p = 0.9,a = 256, = 256, 8 = 160,and b = N+ a),d KRM (p = 0.1, a = 256, ¢ = 256, B = 160, and
b=N+a),eKRM (p =0.5,a =256, = 256, 8 = 160,and b = N + a),and f KRM (p = 0.9, a = 256, « = 256, 8 = 160,and b = N + q)

c
f

is Corel photo gallery [26], contains 80 object categories,
with about 100 images per object category. Each image has
the size of 120 x 80 or 80 x 120. In addition, Corel database
covers a variety of topics, such as airplane, buses, cars,
sunset, buildings, trains. Some examples from the three
databases are shown in Fig. 9.

In fact, three testing subsets of four classes, six classes,
and ten classes have been extracted from each database, in

order to demonstrate the discrimination capability of the
proposed RTMI, RKMI, and RAHMI in comparison with
the existing moment invariants GMI, TTMI (Tchebichef-
Tchebichef moment invariants), KKMI (Krawtchouk-
Krawtchouk moment invariants), RRMI (Racah-Racah
moment invariants), and dHdHMI (dual Hahn-dual Hahn
moment invariants). Furthermore, we used the conven-
tional 1-NN (k-nearest neighbors with k = 1) classifier

o
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Fig. 7 Relative error of the proposed RTMI, RKMI, and RAHMI using Butterfly_37 image affected by a set of scaling factors (a) and transformed by

different rotation angle (b)
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Fig. 8 Relative error of RTMI, RKMI, and RdHMI using Butterfly_37 image affected by different salt-and-pepper density (a) and by additive Gaussian
noise zero mean and several standard deviation values (b)

Fig. 9 Some examples from the used databases: Caltech-101 (a), Corel (b), and Outex (c
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Table 5 Image classification rate (%) using GMI, RTMI, RKMI, RdHMI, RRMI, TTMI, KKMI, and dHdHMI

Number of classes Outex Caltech-101 Corel

4 6 10 4 6 10 4 6 10 Mean
GMI 76.11 67.87 62.56 78.56 68.64 54.89 77.5 52.83 39.7 64.30
RTMI 79.44 78.61 68.83 85.62 71.42 59.78 89.25 76.32 47.10 72.93
RKMI 79.72 79.35 70.33 86.15 73.17 60.52 89.50 77.60 48.20 73.84
RAHMI 79.26 79.17 69.83 85.08 71.89 59.69 89.00 7517 48.20 73.03
RRMI 75.69 66.57 58.72 81.49 7061 59.13 89.25 77.5 557 70.52
TTMI 75.14 588 57.83 82.02 69.57 58.27 88.75 735 47.0 67.88
KKMI 77.64 59.17 585 82.15 68.75 57.2 89.25 74.17 486 68.38
dHdHMI 78.89 61.94 5733 80.16 70.27 58.67 88.25 76.67 46.3 68.72

The data in italic present the performance of our proposed methods in the image classification

with 5-folds cross validation and a moment invariants
order up to 10 with (n < 5,m < 5).

Regarding the comparison between the new moment
invariants and the traditional ones presented in Table 5,
the classification rate of the proposed invariants performs
significantly better than the classical ones for many cases.
Eventually, these new sets show sufficient stability to be
used as pattern feature for image classification.

5 Conclusions

In this paper, we have proposed a new set of bivariate
discrete orthogonal polynomials based on the product
of Racah polynomials by Tchebichef, Krawtchouk, and
dual Hahn polynomials. Using these bivariate discrete
orthogonal polynomials, we have defined three new sep-
arable 2D discrete orthogonal moments named: RTM,
RKM, and RAHM. Several experimental studies have been
introduced for measuring the performance of the pro-
posed methods in comparison with the classical known
moments in terms of image reconstruction quality (under
noisy and noise-free conditions), local feature extraction,
and image classification accuracy. It should be highlighted
that in most experiments, the proposed moments provide
better results than classical methods and their invariability
is highly confirmed.

As a conclusion, considering all presented performances
and robustness of this new set of moments, we are assured
of their ability to give a better representation of the image
content that can be extremely helpful in the fields of
image analysis. Thus, in our future works, we will focus
on improving the numerical stability of the proposed
moments and presenting a fast algorithm for computa-
tion of large size images, instead of the straightforward
algorithm.
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Racah-Krawtchouk moment invariants; ROI: Region of interest of an image;
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