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Abstract

In this paper, a mixture of generalized Cauchy distribution and Rayleigh distribution that possesses a closed-form
expression is proposed for modeling the heavy-tailed Rayleigh (HTR) distribution. This new approach is developed for
analytically modeling the amplitude distribution of ultrasound images based on the HTR distribution. HTR as a
non-Gaussian distribution is basically the amplitude probability density function (PDF) of the complex isotropic
symmetric α-stable (SαS) distribution which appears in the envelope distribution of ultrasonic images. Analytic
expression for HTR distribution is a momentous consideration in signal processing with stable random variables.
Furthermore, we introduce a mixture ratio estimator based on the energy of amplitude PDF which contains both α

and γ parameters. For a quantitative assessment, we compare the accuracy and computational complexity of the
proposed mixture with other approximations of HTR distribution through several numeral simulations on synthetic
random samples. Experimental results obtained from the Kolmogorov-Smirnov (K-S) distance and Kullback-Leibler
(K-L) divergence as the goodness-of-fit tests on real ultrasound images reveal the favor of the new mixture model.

Keywords: Generalized Cauchy-Rayleigh model, Heavy-tailed Rayleigh distribution, α-stable distribution,
Non-Gaussian amplitude PDF, Ultrasound images

1 Introduction
In the medical context, ultrasound provides a noninva-
sive technique of imaging human anatomy with good
visualization characteristics and relatively easy manage-
ment [1]. As a widely used medical imaging modal-
ity, ultrasound applications include cardiology, urology,
obstetrics and gynecology, general abdominal imaging,
vascular imaging, ophthalmology, orthopedics, and sur-
gical procedures [2, 3]. B-mode (brightness mode) has
been the widely accepted method for ultrasound imagery.
In this mode of ultrasound, a linear array of transduc-
ers simultaneously scans a plane through the body that
can be viewed as a 2D image on screen [4]. Model-
ing the distribution statistics of ultrasound images has
its own importance and strongly depends on a com-
prehensive knowledge of tissue scattering mechanism
[5]. In recent years, there has been a growing interest
in modeling the amplitude probability density function

*Correspondence: hamidami@aut.ac.ir
Amirkabir University of Technology, Tehran, Iran

(PDF) of ultrasound images specifically in speckle denois-
ing [6].
Several models have been utilized to statistically charac-

terize the envelope distribution of ultrasound returns [7].
Three major categories used in the amplitude PDF esti-
mation of ultrasound images are summarized into para-
metric, nonparametric, and mixture models [8]. The most
used models for this purpose are the Rayleigh model [9],
K-distribution [10], Nakagami distribution [11], and gen-
eralized Nakagami distribution [12]. In addition to these
methods, one can directly use the return data to con-
struct the amplitude distribution of ultrasound images,
for example, the heavy-tailed Rayleigh (HTR) distribu-
tion. The HTR distribution arises naturally in scenarios
involving scattering effects with scatterers with cross-
section distributions that are heavy tailed, and it has
found applications in many domains including ultrasound
imaging and SAR. Specifically, the HTR model is con-
sidered as the most theoretically well-founded statisti-
cal model at present. The HTR distribution can model
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many classes of ultrasound images [13]. The main con-
sideration in signal processing with HTR distribution is
having no closed-form expression for its statistics. In
other words, there is no analytic formula for the PDF
of the HTR distribution. One solution to overcome this
limitation is utilizing the mixture approximation. This
drawback also makes it difficult to estimate its param-
eters (it is difficult to derive the maximum likelihood
(ML) estimators). We propose a new approximation with
a tractable density, with a novel estimator for its mixture
ratio.
For the HTR distribution to be practically used for any

ultrasound imagery application, one must be competent
to estimate the parameters characteristic exponent, α, and
dispersion, γ , from the observed data. The ML estimate
can be obtained by letting the derivatives of the log-
likelihood function to zero and solving the resultant tran-
scendental equations. Although, it is time consuming and
is not an effective procedure. Moreover, the most impor-
tant disadvantage of this method is having no explicit
expressions for parameter solutions. In the method of
moments (MOM), only the negative-order moments of
the distribution were exploited to estimate the parame-
ters [14]. The method of log-cumulants (MOLC) is an
extension of MOM, by utilizing the Mellin transform
(MT) in place of the usual Fourier and Laplace trans-
forms in statistical computations [15]. Still by analogy
with classical statistic for scalar real random variables
defined in R

+, the second characteristic function (CF)
of the second kind is defined as the natural logarithm
of the first CF of the second kind. Parameter estima-
tion based on the MT is a high accuracy and precision
method to extracting the statistical features of ultrasound
images.
A typical problem in ultrasound signal processing for

coherent image formation is that the tissue scatterer
is influenced by multiplicative speckle noise [16]. The
multiplicative model was proposed for describing the
statistical properties of the ultrasound returns. Accord-
ing to the multiplicative model, several PDFs are devel-
oped such as log-normal distribution, K-distribution, and
G-distribution. K-distribution is a particular form of
the G model, which assumes both the tissue and the
speckle component as gamma distribution [17]. Rician
inverse Gaussian (RiIG) distribution is derived under the
assumption that the scattering process acts as a Wiener
Brownian motion with drift, superimposed on an inverse
Gaussian (IG) distributed stopping time [18]. In many
respects, this model is similar to the K model, but it
has a flexible parameterization, which makes it more
versatile.
Through this paper, we statistically model the envelope

distribution of ultrasound images as a new generalized
Cauchy-Rayleigh mixture approximation based on HTR

distribution. Moreover, analytical derivation for mixture
ratio estimation based on the characteristic exponent
parameter and the dispersion parameter of HTR distribu-
tion which has closed-form expression is derived.
The rest of this paper is organized as follows. Section 2

provides the problem statement for describing the statis-
tics behavior of ultrasound images and related parameter
estimation methods. Specifically, three major mix-
ture approximations of HTR distribution are given. In
Section 3, our novel mixture approximation for HTR
distribution is proposed and derivation of the mix-
ture ratio estimator is provided. We also evaluate the
performance of our proposed model through numer-
ical simulations in Section 4. Furthermore, Section 5
provides experiments on real ultrasound images of
different kinds. Finally, the paper is concluded in
Section 6.

2 Amplitude statistics of ultrasound images
In this section, the prominent models used for model-
ing the amplitude PDF of ultrasound images are exam-
ined. We consider the RiIG model, the K model, and
the HTR model with their parameter estimation meth-
ods.

2.1 RiIG distribution
A mixture of the Rice distribution [19] and the inverse
Gaussian distribution homonymous to the Rician inverse
Gaussian (RiIG) distribution has been addressed as a
function of three parameters for amplitude statistics of
ultrasonic images [18]. This model introduces a new
compound statistical model for modeling non-Rayleigh
amplitude signals. The RiIG PDF is given by

fr(r) =
√

2
π
a

3
2 δeδλ

r
(r2 + δ2)

3
4
K 3

2

(
a
√
r2 + δ2

)
I0(br),

(1)

where λ = √
a2 − b2,K 3

2
(·) is the modified Bessel func-

tion of the second kind and I0(·) denotes the modified
Bessel function of the first kind. It can be seen from (1)
that the model has three parameters and it has capabil-
ity to cover a wide range of shapes. Parameter estimation
of the RiIG model is performed based on the itera-
tive maximum likelihood method (IMLM). Let {rk}, k =
1, 2, · · · ,N , denote a set of independent observations of
RiIG-distributed random variables. For some initial values
for a0 and δ0 and letting vk =

√
r2k + δ20, μ̂ may then be

estimated from the ultrasound data as the following:

μ̂ = 1
N

N∑
k=1

(
vk
a0

vka0
1 + vka0

)
, (2)

and the estimate of μ̂−1 is expressed as
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μ̂−1 = 1
N

N∑
k=1

(
a0
vk

(vka0)2 + 3vka0 + 3
vka0(1 + vka0)

)
. (3)

Using (2) and (3), the RiIG estimators for δ and γ

become δ̂ =
√

1
μ̂−1 − 1

μ̂
and γ̂ = δ̂

μ̂
, respectively. A new

estimate for â may be obtained using the ML method
which is accordingly given as â = argmax

a
F(â; δ̂, λ̂, r),

where,

F(â; δ̂, λ̂, r) = ln
N∏
k=1

fr(rk) =
N∑
k=1

ln fr(rk). (4)

The exact solution to this optimization must be numer-
ically accomplished. The aforementioned steps should
continue till a maximum number of iterations has been
reached or till the desired convergence is achieved. From
another point of view, the RiIG distribution has simi-
larity to the K model; whereas its parameter estimation
procedure is more computationally expensive, RiIG poste-
rior distribution can be expressed in analytic form, which
makes it facile to establish a maximum a posteriori (MAP)
speckle filter.

2.2 K-Distribution
K-Distribution is the most famous distribution for mod-
eling the amplitude PDF of non-Rayleigh ultrasound
which was first proposed to describe the spatial distri-
bution of certain larvae in terms of a two-dimensional
(2D) Brownian motion model, coupled with an expo-
nential birth-death distribution [20]. In other words, the
number of scatterers from the tissue is in itself a ran-
dom variable and the population of scatterers is con-
trolled by a birth-death-migration process. Unlike the
RiIG model, the K-distribution is a two-parameter model.
The corresponding amplitude distribution of the ultra-
sound image based on the K-distribution is defined by

fr(r) = 2
σ�(ν + 1)

( r
2σ

)ν+1
Kν

( r
σ

)
, (5)

where Kν(·) is the modified Bessel function of the sec-
ond kind. Also for the K-distribution, the parameter esti-
mation can be done by the solution of the following
equations [21]:

ψ(1, ν + 1) − 4 ˆ̃k2 + ψ(1, 1) = 0, (6)

σ̂ = 1
2
exp

{ ˆ̃k1 − ψ(ν̂ + 1) + ψ(1)
2

}
, (7)

where k̃n denotes the log-cumulant of degree n.

2.3 HTR distribution
PDF for α-stable random variate is provided by taking
the inverse Fourier transform of its characteristic function
(CF) [22]. Suppose −∞ < x < ∞ and x ∼ S(α, γ ,β ,μ),
its PDF is completely determined by four parameters;
however, a closed-form formula does not exist for its PDF
[23]. α is the characteristic exponent and it determines
the shape of the distribution (0 < α ≤ 2), γ is the dis-
persion or scale parameter of the distribution and plays a
similar role to the variance of the Gaussian distribution
(γ > 0), β is the index of skewness (−1 ≤ β ≤ 1),
and μ is the location parameter (μ ε R). The case β = 0
corresponds to the symmetric α-stable distribution (SαS).
A complex random variable x = xi + jxq = rejφ is
SαS if xi and xq are jointly SαS and symmetric. So x
is a symmetric bivariate α-stable r.v. The PDF of xi and
xq is SαS distributed; furthermore, the absolute PDF of
x is distributed according to a HTR distribution [13].
In [24], a new method was proposed to generalize the
Gaussian model for the complex received ultrasound sig-
nal by assuming both real and imaginary components to
be distributed according to an α-stable distribution. The
backscattered ultrasound RF signals establish a stable pro-
cess which has non-Gaussian α-stable limit distribution,
and the envelope of the backscattered signal is shown to
follow aHTR distribution. This HTRmodel hasmore flex-
ibility than the classical Rayleigh model by considering
the impulsive behavior of ultrasound images [14]. Here-
inafter, we focus on HTR distribution with 1 ≤ α ≤ 2,
which is defined in terms of its CF, as the following:

ϕα,γ (ω) = exp
(−γ |ω|α)

, (8)

where, ω = (ω1,ω2) = ω1 + jω2. In the literature [25], the
HTR distribution is defined as

fα,γ (r) = r
∫ ∞

0
ω exp(−γωα)J0(rω)dω, (9)

where r is the amplitude and J0(·) is the Bessel func-
tion of the first kind. The PDF characterized by (9) is
demonstrated as an empirical model which is ideal for
modeling ultrasound amplitude RF returns. The reason
for this appellation is that this new generalized form of the
Rayleigh distribution can illustrate impulsive behavior and
has heavier tails rather than the classical Rayleigh distri-
bution. Therefore, the noise-free ultrasound return signal
amplitude PDF can be modeled by HTR distribution.
Since the HTR distribution assumes the zero probability
at the origin (f (r) = 0 at r = 0), the ultrasound images
should have no pixel with zero intensity (black margins).
An analytic formula only exists for two special values of α.
The case α = 2 is the following:

f2,γ (r) = r
2γ

exp
(

− r2

4γ

)
, (10)
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which is basically the classical Rayleigh distribution. The
other special case is α = 1:

f1,γ (r) = γ r(
r2 + γ 2) 3

2
, (11)

which corresponds to the generalized Cauchy distribu-
tion. Furthermore, for other values of α, the integral in (9)
has no closed-form solutions; however, asymptotic series
expansion exists.
Now, we consider the problem of parameter estimation

of the proposed mixture model. The underlying param-
eter estimation based on the second-order cumulants is
derived using MOLC as an approach for statistical param-
eter estimation different from the MOM [15].
Estimating α and γ from envelope ultrasound B-mode

samples is particularly important [11]. The log-cumulants
of heavy-tailed α-stable distribution which exist for all
orders are given as the following [8]:

k̃1 = (1 − 1
α

)ψ(1) + ln(2γ
1
α ) (12)

and

k̃n =
[

(−1)n

αn + 1 − (−1)n

2n

]
ψ(n − 1, 1), n > 1 (13)

where ψ(·) is a digamma function and ψ(n, ·) denotes
a polygamma function of order n. Consequently, we
can evaluate the characteristic exponent, α̂, as the
following [25]:

α̂ =

√√√√ ˆ̃k2
ψ(1, 1)

. (14)

Substituting α̂ in (13) and setting n = 2, we note that
the problem turns to solve the following equation:

γ̂ = exp
{
α̂

ˆ̃k1 + ψ(1)(1 − α̂) − α̂ ln 2
}
. (15)

Finally, by estimating α̂ and γ̂ , the corresponding mix-
ture ratio estimate is procured.

2.3.1 Existing approximations
A mixture approximation for modeling the amplitude
statistics of isotropic α-stable clutter has been proposed
in [26] based on the mixture ratio of SαS. As already
mentioned, isotropic α-stable distribution is the ampli-
tude PDF of SαS distribution. This mixture approximation
does not provide any method to estimate the mixture
ratio and it employs the traditional mixture ratio used
in approximating the SαS [27, 28], such as the logarithm
moment (LM) method and the fractional lower order of
moments (FLOM) method:

• LM1 method:

εα = 2
(

α − 1
α

)
, (16)

• LM2 method:

εα = 4
3

(
α2 − 1

α2

)
, (17)

• FLOMmethod:

εα = �(1 − p
α
) − �(1 − p

2 )

�(1 − p) − �(1 − p
2 )

,−2 < p < α, (18)

where εα is the mixture ratio and p denotes the pth-order
moment which is not necessarily an integer and positive.
The main disadvantage of these methods is the utilization
of SαS mixture ratio for HTR distribution, whereas the
HTR distribution is the amplitude PDF of a complex SαS
random variable and is not symmetric.
In the next section, we propose our model for amplitude

PDF of ultrasound images based on a mixture approxima-
tion of HTR distribution.

3 Proposedmodel
To provide a closed-form expression for the amplitude
PDF of ultrasound images which have been modeled
as a HTR distribution, the generalized Cauchy-Rayleigh
mixture approximation is proposed. Our proposed
method constructs a new mixture for HTR distribu-
tion in the context of ultrasound image applications
in which its mixture ratio contains both a characteris-
tic exponent and a dispersion of the HTR distribution,
α and γ . Since the SαS random variable representa-
tion as a scale mixture of the Gaussian random vari-
able is traditional and therefore PDF of SαS can be
approximated by a finite Gaussian mixture model (GMM)
[29], it suggests that a similar non-Gaussian mixture
model may be useful for HTR random variables. In the
following, the proposed mixture approximation based
on α and γ with mixture ratio estimation is intro-
duced.

3.1 Proposedmixture approximation
As already stated in the introduction, the LM1, LM2,
and FLOM mixture ratio estimators which are employed
to model the HTR distribution are only based on the
α and they connive the role of γ in estimating the
mixture ratio, which is the main disadvantage of these
methods. Furthermore, these methods are based on the
moment and log-moment of SαS distribution, whereas
the HTR distribution is the amplitude of complex SαS
distribution which differs from traditional SαS distri-
bution. Here, we propose a new mixture for model-
ing the amplitude PDF of ultrasound images based on
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the non-Gaussian assumption and a new version of the
generalized Cauchy-Rayleigh mixture approximation, in
which its mixture ratio is a function of α and γ (εα,γ ).
We will confine our attention to zero-mean bivariate
isotropic α-stable distribution. HTR distribution evalua-
tion as defined in (9) requires time-consuming numerical
methods to approximate the integral; however, the con-
vergence of the integral may not be obtained because
an infinite number of oscillations occurs by Bessel func-
tion. Our new mixture model is defined as the following
equation:

f
app
α,γ (r) = (1 − εα,γ )f1,γ (r) + εα,γ f2,γ (r). (19)

where εα,γ is the mixture ratio and f1,γ (r) and f2,γ (r)
were defined in (11) and (10), respectively. This mix-
ture model requires only two parameters, and it can
capture the algebraic tail as well as the mode. We
also estimate εα,γ based on a novel approach using the
HTR CF.
The PDF given in (19) can be expressed equivalently in
the Fourier domain as a mixture of generalized Cauchy-
Rayleigh CF. Using (8),(9), and (19), we have,

exp(−γ |ω|α)=(1−εα,γ ) exp(−γ |ω|) + εα,γ exp(−γ |ω|2).
(20)

It is noted that (20) is analytically characterized,
and hence, mixture ratio estimation with a closed-form
expression is achievable. In the following, we introduce an
estimator for the mixture ratio which is basically based on
the energy stored in the CF of the distribution.

3.2 Mixture ratio estimation based on α and γ

Our approach considers the equality of the energy of the
distribution on both sides of (19). According to Rayleigh’s
(Parseval’s) theorem, the total energy stored in the r
domain is equal to the total energy stored in theω domain.
Therefore, the energy of 2D CF is obtained as,
∫ ∞

−∞

∫ ∞

−∞
‖ϕα(ω)‖2dω1dω2 =

∫ ∞

−∞

∫ ∞

−∞
‖(1 − εα,γ )ϕ1(ω)

+ εα,γ ϕ2(ω)‖2dω1dω2.
(21)

The right side of this equation has three terms. For
simplicity, this equation can best be described as,

Iα = (1 − εα,γ )2I1 + ε2α,γ I2 + 2εα,γ (1 − εα,γ )I12 (22)

where Iα , I1, I2, and I12 are the coefficients related to HTR
CF, as the following:

Iα =
∫ ∞

−∞

∫ ∞

−∞
‖ϕα(ω)‖2dω1dω2

=
∫ ∞

−∞

∫ ∞

−∞
exp[−2γ (ω2

1 + ω2
2)

α/2] dω1dω2,
(23)

For computing the value of Iα , a change of variable has
been done as ω1 = ρ cos θ ,ω2 = ρ sin θ as follows:
∫ ∞

−∞

∫ ∞

−∞
exp

[−2γ
(
ω2
1 +ω2

2
)α/2] dω1dω2

=
∫ 2π

0

∫ ∞

0
ρ exp(−2γρα)dρdθ ,

(24)

using table of integrals [30], we find that
∫ ∞

0
xme−ηxndx = �

(m+1
n

)
nη

m+1
n

, η > 0,m > 0, n > 0.

(25)

The integral over θ results in 2π ; hence, Iα is easily
obtained as the following equation:

Iα = 2π
∫ ∞

0
ρ exp(−2γρα)dρ = 2π�( 2

α
)

α(2γ )
2
α

. (26)

It is obvious from the above equation that the value of
Iα depends on both α and γ . Similarly,

I1 =
∫ ∞

−∞

∫ ∞

−∞
‖ϕ1(ω)‖2dω1dω2

=
∫ ∞

−∞

∫ ∞

−∞
exp[−2γ

(
ω2
1 + ω2

2
) 1
2 ] dω1dω2

= 2π
∫ ∞

0
ρ exp(−2γρ)dρ = π

2γ 2 ,

and

I2 =
∫ ∞

−∞

∫ ∞

−∞
‖ϕ2(ω)‖2dω1dω2

=
∫ ∞

−∞

∫ ∞

−∞
exp[−2γ

(
ω2
1 + ω2

2
)
] dω1dω2

= 2π
∫ ∞

0
ρ exp

(−2γρ2) dρ = π

2γ
.

I1 and I2 are functions of dispersion, γ . Finally, I12 is
calculated as,

I12 =
∫ ∞

−∞

∫ ∞

−∞
exp

[
γ

(
ω2
1+ ω2

2+
(
ω2
1 + ω2

2
) 1
2

)]
dω1dω2

= 2π
∫ ∞

0
ρ exp[−γ (ρ2 + ρ)] dρ, (27)

in which an additional change of variable as y = ρ2 + ρ is
needed, so we have

I12 = π

∫ ∞

0

{
exp(−γ y) − exp[−γ (y2 + y)]

}
dy. (28)

From [30], we may write,
∫ ∞

0
exp

{
− x2

4ξ
−ζx

}
dx=√

πξ exp (ξζ 2)[1−�(ζ
√

ξ)] , ξ >0,

(29)
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Fig. 1Mixture ratio estimator. Different approximations of HTR
distribution (9) versus values of α ∈ [1, 2] with γ = 2, p = −1

where �(·) is the error function. Hence,

I12 = π

γ
− π

2

√
π

γ
exp

(γ

4

) [
1 − �

(√
γ

2

)]
. (30)

Substituting Iα , I1, I2, and I12 in (22), we have a quadratic
equation which is a polynomial of degree 2.

(I1+I2−2I12)ε2α,γ −2(I1−I12)εα,γ +(I1−Iα) = 0. (31)

We need to analyze separately an extra step to descend
the roots from two to one. The only acceptable root is,

εα,γ =
(I1 − I12) +

√
I212 + Iα(I1 + I2 − 2I12) − I1I2
I1 + I2 − 2I12

.

(32)

Note that εα in (16) and (17) is a concave function of α,
whereas εα in (18) may be a concave or convex function
based on the values of α, p. Furthermore, εα,γ in (32) is
also a concave or convex function based on the values of
α, γ . In Fig. 1, the behavior of the mixture ratio versus the
different values of α is demonstrated. It can be seen that
for α = 1, εα,γ = 0 and for α = 2, εα,γ yields to 1.
The proposed mixture approximation is a model for the

amplitude PDF of complex SαS or HTR distribution. So,
only the ultrasound image in which its related RF signal is
symmetric (with no skewness) can be modeled with this
approach. However, in many applications, the symmetric
distribution is considered.

4 Simulation results
In this section, for quantitative evaluation of the proposed
mixture, simulations in terms of error, K-S distance, K-L
divergence as the goodness-of-fit tests, and computation
time are provided. The appropriate choice of moment
order plays an important role on FLOM technique for

Fig. 2 HTR distribution and its mixture approximations.
α = 1.25, γ = 1.5, and p = −0.5

estimating the parameters, −2 < p < −0.5 [25]. Accord-
ing to the simulation results, we use p = −0.5 as the
best choice while estimating the parameters of the HTR
distribution.

4.1 Proposedmixture approximation assessment
Now, we compare the capability of the proposed mix-
ture with others in approximating the HTR PDF. Note
that the existing approximations for the HTR distribu-
tion do not have their own mixture ratio, but they use
the mixture ratio of the SαS distribution; in other words,
they do not consider the dispersion parameter in esti-
mating the mixture ratio. In Fig. 2, the amplitude PDF
of an ideal HTR distribution (9) and its approximations
based on the LM1, LM2, FLOM, and proposed mix-
ture are depicted for α = 1.25, γ = 1.5 with N =
10, 000 samples. As illustrated in this figure, the pro-
posed mixture approximation fits more precisely the
empirical HTR obtained from the samples, while sam-
ple size is small and the statistics of distribution is
impulsive.
Moreover, Fig. 3a shows the approximation error

between the HTR and corresponding mixture approxi-
mations for different values of α. We used the following
definition of error for evaluating the performance of the
proposed method,

error (dB) = 10 log10
(∫ ∞

0

∣∣∣ fα,γ (r) − f
app
α,γ (r)

∣∣∣2 dr
) 1

2
.

(33)

Even though the behavior of the samples is very impul-
sive due to the small values of α, the performance of
the proposed method is significantly better than the
other models. Figure 3b also examines the effect of
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Fig. 3Mixture approximation error. a Error between the HTR
distribution and its approximations for different values of 1 ≤ α ≤ 2.
b Error between the empirical HTR and approximations of HTR for
different sample size 10, 000 ≤ N ≤ 100, 000 and α = 1.25
(impulsive). γ = 1.5, p = −0.5

sample size on the error between the empirical PDF and
approximations through 1000 simulations. It is simply
seen that the value of error decreases by increasing the
sample size. In this figure, only different sample sizes form
10,000 to 100,000 are plotted. Since LM1, LM2, FLOM,
and the proposed mixture ratios have the same value (0)
for α = 1 (generalized Cauchy distribution) and the same
value (1) for α = 2 (Rayleigh distribution), their perfor-
mance and resultant error are the same at the beginning
and at the end of Fig. 3a.

4.2 K-S distance
K-S distance as a nonparametric test of the equality
of continuous PDF has been successfully employed to
compare a sample with a reference PDF. This statistic
criterion determines a distance between the empirical
cumulative distribution function (CDF) of the sample and
the CDF of the reference distribution as the following:

DK−S = sup
r

‖Fα,γ (r) − F
app
α,γ (r)‖, (34)

Fig. 4 K-S distance as a goodness-of-fit test. a K-S distance between
the approximations and theoretical HTR, 1 ≤ α ≤ 2. b K-S distance
between the approximations and empirical HTR,
10, 000 ≤ N ≤ 100, 000 and α = 1.25. γ = 1.5, p = −0.5

where sup is the supremum and Fα,γ (·) and Fapp
α,γ (·)

denote the empirical CDF and the CDF computed from
the approximated PDF, respectively. The K-S distance
computed for the true HTR distribution and its four
approximations is depicted in Fig. 4a based on differ-
ent characteristic exponents from impulsive (α = 1) to
smooth (α = 2) statistics, γ = 1.5. We carried out 1000
simulations to estimate the K-S test similar to the previ-
ous section for synthetic samples of a HTR distribution
with α = 1.25, γ = 1.5 and for 10, 000 ≤ N ≤ 100, 000,
and the simulation results are demonstrated in Fig. 4b. In
this way, as discussed before, the performances of themix-
ture estimators is identical for α = 1 and α = 2, while at
the middle of the region (α = 1.5), the lowest efficiency
appears.

4.3 Computation time
Now, the performance of the HTR mixture ratio estima-
tors is verified in the context of time complexity and in
terms of execution time on a machine.
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Table 1 Mean computation time (in milliseconds) obtained from
the 1000 simulation runs for the HTR mixture approximations
based on α = 1.5 and γ = 3

LM1 LM2 FLOM Proposed

N = 103 0.58 0.62 0.65 0.78

N = 104 0.90 0.94 0.95 0.99

N = 105 5.15 5.29 5.61 5.95

N = 106 52.1 53.0 54.6 59.3

To compare the computation time of LM1, LM2,
FLOM, and the proposed method, the number of sam-
ples (N) plays an important role. On the other hand,
the algorithm used to estimate the parameters of the
HTR distribution is the same for all four aforemen-
tioned methods, so this step imposes a constant burden
on all estimators. LM1 uses one addition and the num-
ber of its multiplications is two, whereas LM2 requires
one addition and five multiplications. The number of
additions and multiplications for FLOM are five and
three, respectively. Moreover, a computation of a gamma
built-in function is needed. The complexity of our esti-
mator in terms of the number of multiplications is
O(1). The computation time in the proposed method
is directly dependent on the calculation of exponential
and error function. In addition to the above discus-
sion, the computation time of the estimators is examined
by performing 1000 simulation runs. The mean com-
putation time for four mixture ratio estimators of the
HTR distribution based on the proposed and the LM1,

LM2, and FLOM methods is illustrated in Table 1 for
different values of N = 103, 104, 105, 106 and α =
1.5, γ = 3. All the 1000 simulations are performed
on a PC machine with 64-bit operating system and
Intel Core i5-2430M CPU and 4-GB RAM under MAT-
LAB 2012a. As predicted, the computation time of our
estimator is greater than the other methods, and the
LM1 method has the smallest computational burden.
On the other hand, since the proposed estimator con-
siders both α and γ in estimating the mixture ratio,
it is efficient in the context of accuracy and goodness
of fit.

5 Experiments on real ultrasound images
The congruence of the proposed mixture approxima-
tion based on the HTR distribution as a non-Gaussian
statistical tool for modeling the amplitude statistics of
medical ultrasound images is experimentally scrutinized.
For experimental assessment, we used four rectangle
B-mode ultrasound images: (1) common carotid artery
(CCA) in longitudinal section; (2) thyroid cyst, internal
calcification; (3) pancreas in tissue harmonic mode; and
(4) breast mass. This dataset is provided by the SPLab
research group of the Brno University of Technology
and the images taken from Samsung Medison ultra-
sound scanners. In this study, we consider only ultra-
sound images; however, the results in this paper are
general and can be used to model other types of med-
ical images [31]. The resolution of images is 300 ×
300 pixels. The ultrasound images used in the simula-
tions are shown in Fig. 5. Using the MOLC estimator,

Fig. 5 Dataset. a Common carotid artery (CCA) in longitudinal section; b thyroid cyst, internal calcification; c the pancreas in tissue harmonic mode;
d breast mass. CCA image is provided by the SPLab research group of the Brno University of Technology. The other three ultrasound images are
provided by Samsung Medison ultrasound scanners
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Fig. 6 Comparison of the amplitude PDF obtained from the K, RiIG,
and HTR-proposed distributions. Ultrasound images: a CCA and b
thyroid cyst, internal calcification

we estimate the parameters of the HTR distribution:
α = 1.2042, γ = 18.8584 for the CCA ultrasound image;
α = 1.9505, γ = 36.5655 for the thyroid cyst ultrasound
image; α = 1.8160, γ = 98.9915 for the pancreas ultra-
sound image; and α = 1.6939, γ = 40.7420 for the breast
mass ultrasound image. Also, the parameter estimation
based on MOLC for the K model has been, done and we
obtained ν = [−0.3089, 0.4786, 1.6197, 1.2159] and σ =
[ 25.8518, 55.9408, 38.7482, 28.3202] for four ultrasound
images. Parameter estimation of the RiIG model with
a0 = 2 and δ0 = 20 is performed based on IMLM.
For CCA, a = 3.0394, λ = 0.1725, δ = 1.9891; the
thyroid cyst, a = 3.2811, λ = 0.4372, δ = 1.2166;
the pancreas, a = 4.4463, λ = 0.4095, δ = 1.3952;
and the breast mass, a = 3.5398, λ = 0.4302, δ =
1.2472 are calculated. The experimental results depicted
in Fig. 6a give a comparison between our proposed
scheme for amplitude distribution and previously stud-
ied amplitude distributions for the image taken from
CCA. Figure 6b also illustrates that the envelope of sig-
nals backscattered from thyroid cyst is best defined by
the HTR model using proposed mixture approximation

Fig. 7 Experimental results on different mixture ratio approximations.
This figure demonstrates the results of experiments for amplitude
PDF of ultrasound images: a the pancreas in tissue harmonic mode
and b breast mass. Comparison is done using the HTR-LM1, HTR-LM2,
HTR-FLOM, and HTR-proposed approximations

ratio. Moreover, from Fig. 7a, b, it can be apperceived
that the proposed mixture approximation precisely fits
the empirical PDF and the tail of the empirical data
with respect to those of the HTR-LM1, HTR-LM2, and
HTR-FLOM mixture approximation models for ultra-
sound images taken from the pancreas and breast mass,
respectively. We find that the HTR-proposed distribu-
tions provide a better fitness than the K, RiIG, HTR-
LM1, HTR-LM2, and HTR-FLOM distributions. It is
very important to note that the RiIG model has three
parameters, whereas the HTR and K models have two
parameters.
Table 2 displays error for differentmodels used for ultra-

sound images. However, when compared to other ampli-
tude PDF estimation methods in ultrasound imagery,
the HTR-proposed approach has a lower error. The
errors of the proposed method for ultrasound images
are 4.3804, 0.1298, 0.0185, and 0.2388 dB lower than
the best error obtained based on the other methods.
In Table 3, the parameter estimation for the six models
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Table 2 Comparison of the six models in the context of error (dB)

K RiIG HTR-LM1 HTR-LM2 HTR-FLOM HTR-Proposed

CCA −14.7025 −12.7357 −14.6616 −12.9651 −13.6374 −19.0420

Thyroid cyst −16.6479 −13.8617 −16.7142 −16.7285 −16.6356 −16.8583

Pancreas −16.1737 −11.5753 −16.2033 −16.1832 −16.2709 −16.2894

Breast mass −18.3238 −10.2990 −18.0846 −18.0010 −18.3902 −18.6290

used for the PDF estimation of ultrasound images
are also presented, together with their respective K-
S distances. The HTR-proposed distribution has the
least and the HTR-LM2 and RiIG models have the
worst K-S distance. The K-distribution and HTR-FLOM
have the closest K-S distances to the proposed model.
The comparison of the HTR-proposed model with
the K-distribution shows a better efficiency of 8.33,
11.91, 11.79, and 2.60% for ultrasound images 1–4,
respectively.

5.1 K-L divergence
In the following, we present the experimental results
obtained from the K-L divergence test by our proposed
method with the ones obtained by K, RiIG, HTR-LM1,
HTR-LM2, and HTR-FLOM. For distributions fα,γ (r) and
f appα,γ (r) of a continuous random variable, the K-L diver-
gence or K-L distance is defined to be the following
integral:

DK−L( fα,γ (r)|| f appα,γ (r)) =
∫ ∞

0
fα,γ (r) ln

fα,γ (r)
f appα,γ (r)

dr,

(35)

where fα,γ (r) denotes the empirical PDF. The above
equation is a measurement of the difference between two
probabilities; particularly, it denotes the information lost
when f appα,γ (r) is used to approximate fα,γ (r). Table 4 depicts
that the HTR-proposed model has the lowest value and it
improves the best goodness of fitness obtained with other
methods by 22.8, 86.7, 2.9, and 1.8% in the context of the
K-L divergence criterion.

5.2 Lm-Norm
Finally, in order to investigate the validity of the error
criterion, we further perform simulations to measure the
Lm-norm between the PDF estimated by different mod-
els and empirical PDF obtained from real ultrasound data.
For a real numberm > 1, Lm-norm is defined by,

Table 3 K-S distance and parameter estimation for K, RiIG, HTR-LM1, HTR-LM2, HTR-FLOM, and HTR-proposed models

Model Parameters
CCA Thyroid cyst Pancreas Breast mass

K-S dis K-S dis K-S dis K-S dis

K
ν̂ −0.3089

0.0732
0.4786

0.0227
1.6197

0.0343
1.2159

0.0172
σ̂ 25.8518 55.9408 38.7482 28.3202

RiIG

â 3.0394

0.1349

3.2811

0.1893

4.4463

0.1538

3.5398

0.1709λ̂ 0.1725 0.4372 0.4095 0.4302

δ̂ 1.9891 1.2166 1.3952 1.2472

HTR-LM1

α̂ 1.2042

0.0982

1.9505

0.0231

1.8160

0.0369

1.6939

0.0213γ̂ 18.8584 36.5655 98.9915 40.7420

ε̂α 0.3392 0.9548 0.8327 0.6568

HTR-LM2

α̂ 1.2042

0.1517

1.9505

0.0232

1.8160

0.0391

1.6939

0.0241γ̂ 18.8584 36.5655 98.9915 40.7420

ε̂α 0.4139 0.9532 0.8167 0.6333

HTR-FLOM

α̂ 1.2042

0.1446

1.9505

0.0225

1.8160

0.0272

1.6939

0.0200γ̂ 18.8584 36.5655 98.9915 40.7420

ε̂α 0.0155 0.9623 0.8420 0.6649

HTR-Proposed

α̂ 1.2042

0.0671

1.9505

0.0217

1.8160

0.0272

1.6939

0.0169γ̂ 18.8584 36.5655 98.9915 40.7420

ε̂α,γ 0.2169 0.9603 0.8053 0.6288
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Table 4 Numerical results obtained from K-L divergence test for four ultrasound images

K RiIG HTR-LM1 HTR-LM2 HTR-FLOM HTR-Proposed

CCA 0.1041 0.1328 0.0994 0.1296 0.1315 0.0767

Thyroid cyst 0.0068 0.2974 0.0033 0.0044 −0.0015 −0.0002

Pancreas 0.0497 0.2243 0.0431 0.0419 0.0499 0.0407

Breast mass 0.0215 0.2671 0.0249 0.0230 0.0246 0.0211

|| fα,γ (r)− f
app
α,γ (r)||m =

(∫ ∞

0

∣∣∣ fα,γ (r) − f
app
α,γ (r)

∣∣∣mdr
) 1

m
.

(36)

We apply the proposed parametric method for mixture
ratio estimation of the CCA ultrasound image. In Fig. 8,
the simulation results for the six different techniques are
given. It can be deduced from this figure that the proposed
method has better consistency with the different-distance
criterion defined as Lm-norm. Comparing the Lm-norms,
we realized that the value of error remains approximately
constant for m > 5. Numerical results verify that the
developed model has the superior performance and the
RiIGmodel has the worst performance for amplitude PDF
estimation.

6 Conclusions
In this paper, an effective scheme for statistically non-
Gaussian modeling of the amplitude PDF of ultrasound
images is proposed. The basic idea of the model is to
represent a mixture approximation for HTR distribution
with a closed-form formula whose mixture ratio is a func-
tion of both α and γ . In particular, we not only consider
the characteristic exponent on estimating the mixture
ratio but also the influence of dispersion has been inves-
tigated. Performance comparison between the proposed
method and the existing ones is adopted through several

Fig. 8 Lm-Norm. CCA ultrasound image: α̂ = 1.2042, γ̂ = 18.8584

simulations, and the experimental results obtained from
real ultrasound images in terms of error, K-S distance, K-
L divergence, and Lm-norm confirm the plausibility of the
new approach in terms of accuracy and fitness.
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