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Abstract

Perceptual image quality assessment (IQA) adopts a computational model to assess the image quality in a fashion,
which is consistent with human visual system (HVS). From the view of HVS, different image regions have different
importance. Based on this fact, we propose a simple and effective method based on the image decomposition for
image quality assessment. In our method, we first divide an image into two components: edge component and
texture component. To separate edge and texture components, we use the TV flow-based nonlinear diffusion method
rather than the classic TV regularization methods, for highly effective computing. Different from the existing
content-based IQA methods, we realize different methods on different components to compute image quality. More
specifically, the luminance and contrast similarity are computed in texture component, while the structural similarity is
computed in edge component. After obtaining the local quality map, we use texture component again as a weight
function to derive a single quality score. Experimental results on five datasets show that, compared with previous
approaches in the literatures, the proposed method is more efficient and delivers higher prediction accuracy.
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1 Introduction
With the wide use of digital image, image quality assess-
ment (IQA) becomes extremely important in many appli-
cations, such as image acquisition, watermarking, com-
pression, transmission, restoration, enhancement, and
denoising [1–3]. During the past decades, major advances
have occurred in image quality assessment. Generally,
the IQA methods can be classified into two classes: one
is the subjective assessment, where the image quality is
decided by human observers. The other is the objective
assessment, whose goal is to design algorithms to mimic
the subjective judgment accurately and automatically. In
practice, subjective assessment is usually inconvenient,
time-consuming, and expensive. This drawback makes it
impractical in real-world applications. According to the
availability of a reference image, objective IQA indices can
be classified as full reference (FR), no-reference (NR), and
reduced-reference (RR) methods.
Due to the significant advantages of the objective IQA,

a lot of excellent schemes have been proposed based
on it. These schemes can generally be categorized into
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three types: intensity-based methods, human visual sys-
tem (HVS)-based methods, and structure feature-based
methods [4]. The classical examples of intensity-based
methods, including the mean squared error (MSE) and
peak signal-to-noise ratio (PSNR) [5], are widely used in
FR-IQA because of their simplicity and clear meaning.
However, they regard the image as simple signals when
evaluating its quality, which cannot coincide with human’s
subjective evaluation.
To address this problem, many HVS property-based FR-

IQA methods are proposed. Unlike MSE or PSNR, the
HVS property-based methods try to construct a mathe-
matic model to simulate HVS characteristics, including
visual masking effect [6], contrast [7], and just notice-
able differences [8]. The noise quality measure index and
the visual signal-to-noise ratio index (VSNR) emphasize
the importance of HVS sensitivity to different visual sig-
nals, such as the luminance, the contrast, the frequency
content, and the interaction between them. However, as
pointed out in [9, 10], since the knowledge about the
various processing stages in the HVS is less, there is no
satisfying visual perception model that account for all the
experimental findings on the HVS.
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The structural similarity image (SSIM) index proposed
by Wang et al. [3] brings FR-IQA to the structure-based
stage [11]. The method is derived from the hypothesis
that the HVS is highly adapted for extracting the struc-
tural information from the visual scene, and therefore, a
measurement of structural similarity can provide a good
approximation of the perceived image quality. Due to the
success of SSIM, the contrast and structure information
are considered as two important factors in the evaluation
of FR-IQA. Based on this idea, a number of modifica-
tions have been proposed to improve SSIM’s performance
[12–15]. Based on the fact that HVS is selective for a
certain range of spatial frequencies [16]. In [12], the multi-
scale method is introduced into SSIM, this method incor-
porates the SSIM at five different resolutions with the
application of successive low-pass filtering. In [13], Wang
and Li improved the original MSSSIM to the information
content weighted SSIM index (IWSSIM) by introducing
a new information content weighting (IW)-based qual-
ity score. In [14], Chen et al. proposed gradient SSIM
(G-SSIM); in this method, contrast similarity and struc-
tural similarity are computed in gradient domain. In [15],
SSIM is used directly in the discrete wavelet decomposi-
tion band, then the whole image quality can be evaluated
by the weighted mean of all the bands. In [17], Wang
et al. proposed patch-based objective quality assessment
method using an adaptive representation of local patch
structure and evaluating their perceptual distortions in
different ways. Since SSIM is proven to be more effective
in quantifying the suprathreshold compression artifacts,
such as artifacts that distort the structure of an image
[18], it has been used in various scenarios, such as video
coding and image denoising [19, 20]. In [19], Wang et al.
proposed a perceptual video coding framework based on
SSIM-inspired divisive normalization. In [20], the SSIM
index is embedded into the framework of non-local means
image denoising.
In the last few decades, some effective features that can

well characterize contrast and structural information in
image are employed to improve the performance of the
FR-IQA metrics [11, 21–23]. For example, the gradient
magnitude have been used to characterize contrast and
structural information, and have played important roles in
recent FR-IQA methods.
Based on the fact that different image regions have dif-

ferent importance for HVS, some researchers attempt to
assign visual importance weights to improve the perfor-
mance of the FR-IQA indices [11, 23, 24]. Zhang et al. pro-
posed a Riesz-transform based feature similarity (RFSIM)
[23] index for FR-IQA. This method consists of three
steps. First, the first- and second-order Riesz transforms
are introduced to characterize local structures in images.
Then, based on the assumption that HVS is sensitive to
image edges, key locations are marked by a mask formed

by the Canny operator. Finally, only those Riesz transform
coefficients within key locations are used for evaluating
visual quality scores. Recently, Zhang et al. [11] also pro-
posed a feature similarity (FSIM) index where the phase
congruency and the gradient magnitude are used to mea-
sure the local structures. However, the above-mentioned
works are too time-consuming, which cannot be used in
the real-time applications.
In this paper, we take two important facts into consider-

ation, one is different image regions have different impor-
tance for HVS, the other is different quality metrics have
different sensitive in different regions. Inspired by this,
we propose a simple and effective image decomposition-
based structural similarity (IDSSIM) index for image
quality assessment. In our method, we first partition
an image into two components: edge and texture com-
ponents, using the TV flow based nonlinear diffusion
method. Then, themean and standard deviation of texture
component are used to evaluate the local luminance and
contrast similarity; the gradient magnitude of edge com-
ponent is used to evaluate the local structural similarity.
The effects of the changes in edge and texture are inte-
grated using different weights to obtain the local image
quality score. Finally, the texture component is employed
as a weight function to derive a single similarity score.
Since the chrominance information will also affect HVS
in understanding the images, we further extend our pro-
posed IDSSIM by incorporating the chrominance infor-
mation with the color IQA, and we call this extension
IDSSIMc. The experimental results on five benchmark
datasets demonstrate that our proposed method provides
a reliable performance of FR-IQA.
The rest of this paper is organized as follows. In

Section 2, we illustrate the proposed model in details.
Experimental results on five datasets are given in
Section 3, and the conclusion follows in Section 4.

2 Image decomposition-based structural
similarity index

2.1 Motivation
The rationale behind the proposed methods is that the
edge and texture regions have different importance for
vision perception. As shown in Fig. 1, panel a is a ref-
erence image while panels d and g are its two distorted
versions (the distortion types are additive gaussian noise
and non-eccentricity pattern noise, respectively). Panels
b, e, and h are the edge component of panels a, d, and g,
respectively. Panels c, f, and i are the texture component of
a, d, and g, respectively. We can see that images in panels
c and f have more obvious differences than those in panels
b and e. In contrast, the differences in panels b and h are
more obvious than those in panels c and i. This exam-
ple clearly illustrates that different regions show different
sensitivity in different distortion types. To further specify
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a b c

d e f

g h i
Fig. 1 Examples of image decomposition. a is a reference image while d and g are its two distorted versions (the distortion types are additive
gaussian noise and non-eccentricity pattern noise, respectively); b, e, and h are the edge component of a, d, and g, respectively; c, f, and i are the
texture component of a, d, and g, respectively

this statement, we analyze three representative methods
PSNR, SSIM, and FSIM in different image regions in
TID2013. The following steps demonstrate the process:

1. Divide an image into two component, edge and
texture, using the TV flow-based image
decomposition. More details about this method are
illustrated below.

2. Compute the PSNR, SSIM, and FSIM index for each
region.

3. Compute the Spearman correlation coefficient in
different components.

From Table 1, the best results for PSNR and SSIM are
obtained only when considering the texture regions of an
image. For the PSNR and SSIM results in Table 1, it can
be explained by the contrast sensitivity curve (CSF), which
considers that human eyes are more sensitive to median

Table 1 Performance of FSIM and SSIM in different region

Edge region Texture region Origin

PSNR 0.6604 0.7969 0.7247

SSIM 0.7158 0.8037 0.7508

FSIM 0.8012 0.7906 0.8009

frequency in comparison with lower and higher frequen-
cies. Since the gradient magnitude is the high frequency
component of an image, the FSIM shows the best per-
formance in edge region. Motivated by this observation,
we propose to implement different methods on differ-
ent regions to compute image quality. The luminance and
contrast are two important attribute for characterizing the
quality of an image [3]. Since human sensitivity to the
contrast performs well in median frequency, we compute
the luminance and contrast similarity in texture region.
Besides the luminance and contrast, the structural also
plays an important role in the perceived visual quality.
Here, we compute the structural similarity in the edge
image. In the following, we explain the proposed method
in detail.

2.2 Proposedmethod
In this section, we propose a novel FR-IQA method based
on the image decomposition. The proposed image quality
metric works with luminance only. The RGB color inputs
are converted into YIQ color space [25], defined as

⎡
⎣
Y
I
Q

⎤
⎦ =

⎡
⎣
0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

⎤
⎦

⎡
⎣
R
G
B

⎤
⎦ (1)



Yang et al. EURASIP Journal on Image and Video Processing  (2016) 2016:31 Page 4 of 13

where Y represents the luminance information, I and Q
convey the chrominance information.
The framework of IDSSIM is demonstrated in Fig. 2,

which consists of the following four steps:

(1) Partition an image into edge and texture component
images, using the TV flow image decomposition.

(2) Compare the luminance and contrast similarity in
texture image.

(3) Compare the structural similarity in edge image.
(4) Compute the global perceptual quality scores with

the texture as the weight function.

2.3 TV flow-based image decomposition model
An image can be regarded as the sum of the edge image
u (being piecewise smooth and with sharp edge along
the contour) and the texture image v (only containing
fine-scale details, usually with some oscillatory nature),
defined as: f = fu + fv. The image decomposition is
widely used in the literature of image coding, image
denoising, image registration, and texture discrimina-
tion. A general way to obtain this decomposition using
the variational approach is to solve the problem min{
TV

(
fu

) | ∥∥fu − f
∥∥
B ≤ σ

}
, where TV

(
fu

)
denotes the

total variation of fu and ‖·‖B is a norm. The total varia-
tion of fu is minimized to regularize uwhile keeping edges
like object boundaries of f in fu [26]. In our method, we
use a TV flow-based nonlinear diffusion technique [27],
which is the parabolic counterpart to TV regularization
[18], instead of TV regularization. In 1D, TV flow and
TV regularization yield exactly the same output. In 2D,
this equivalence could not be proven so far; however, both
processes at least approximate each other very well [27].

The edge image fu of the image evolves under progress
of artificial time t according to the partial differential
equation (PDE)

fu = ut+1,ut+1 = ut + div
(
g
(∣∣�ut

∣∣) � ut
)

(2)

where t is the iteration number, div is the divergence oper-
ator, � is the gradient operator, and g(·) is the diffusivity
function.
Note that it is critical to choose the proper diffusivity

function g(·). In order to reduce the smoothing at edges,
the diffusivity g(·) is chosen as a decreasing function of the
edge detector �ut . In this paper, we choose the TV flow
[28], defined as:

g(x) = 1
ε + x

(3)

where ε is a small positive constant.
In practice, the nonlinear diffusion is quite inefficient,

which limits its practical application. To overcome its lim-
itation, we adopt an efficient approach, called the additive
operator splitting (AOS) scheme, which is defined as:

ut+1 = 1
2

((
f − 2τAx

(
ut

))−1 + (
f − 2τAy

(
ut

))
ut−1

)
ut

(4)

where Ax and Ay denote the diffusion matrices com-
puted in the horizontal and vertical directions, respec-
tively. Compared with the implicit schemes, this scheme
uses backward Euler method to obtain a system of linear
equations, which is stable for any time step. The efficiency
of the diffusion can be improved by using larger time step.
More details about the method can be found in [29].

Reference Image
and 

Distorted Image

Color space 
conversion

(RGB to YIQ)

TV flow based 
Image 

Decomposition

Texture 
component

Edge 
component

Standard deviation
Comparison

Combination

Mean value
Comparison

Gradient modulus
Comparison

Combination
IDSSIMc

Index

Weight function

Chrominance components 
Comparison

Fig. 2 The framework of the proposed approach. First, the RGB color reference and distorted images are converted into YIQ color space. The
luminance channel of reference and distorted images are divided into edge and texture components. Then, the mean and standard deviation of
texture component are used to evaluate the local luminance and contrast similarity; the gradient magnitude of edge component is used to
evaluate the local structural similarity. The effects of the changes in edge and texture are integrated using different weight methods to obtain the
local image quality score. Moreover, I and Q, two chrominance channels, are used as features to characterize the quality degradation caused by
color distortions. Finally, the texture component is employed as a weighting function to derive a single similarity score
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In the following, the texture image is defined as:

fv = f − ut (5)

where t is the number of iterations. Examples of edge and
texture images are shown in Fig. 1. The performance vari-
ations according to the time step τ and iteration number t
settings are given in Section 3.

2.4 Image decomposition-based structural similarity
With the extracted edge and texture images, in this
section, we present a novel IDSSIM index for FR-IQA.
Suppose that we are going to calculate the similarity
between reference image f1 and distorted image f2. The
computation of IDSSIM consists of two stages. In the first
stage, the local similarity map is computed, and then in
the second stage, we pool the similarity map into an over-
all quality score. We separate the IDSSIM measurement
between f1 (x) and f2 (x) into two components, each for
edge image or texture image.
For similarity measurement in texture image, we divide

the task of texture image similarity measurement into two
components: luminance and contrast similarity. Similar to
[3], we use the mean and standard deviation as estimate
of the signal luminance and contrast, respectively. Let μ1
and μ2 denote the mean of texture images fv1 and fv2; let
σ1 and σ2 denote the standard deviation of texture images
fv1 and fv2. The similarity of the local statistics is defined
as:

Sμ(x) = 2μ1 (x) · μ2 (x) + C1

μ1 (x)2 + μ2 (x)2 + C1
(6)

Sσ (x) = 2σ1 (x) · σ2 (x) + C2

σ1 (x)2 + σ2 (x)2 + C2
(7)

where C1 and C2 are positive constant to increase the
stability of Sμ(x) and Sσ (x).
Specially, we use an K ∗ K circular-symmetric Gaussian

weighting function W = {wi | i = 1, 2, . . . ,N}, with a
standard deviation of 1.5 samples, normalized to unit sum,
the same as [3]. The estimates of μ (x) and σ (x) are then
modified accordingly as:

μ (x) =
N∑
i=1

wixi (8)

σ (x) =
( N∑

i=1
wi (xi − μ (x))2

) 1
2

(9)

Finally, Sμ(x) and Sσ (x) are combined to get the texture
image local similarity TS(x), defined as:

TS (x) = [
Sμ(x)

]α · [Sσ (x)]β (10)

where α and β are two parameters used to adjust the rela-
tive importance of Sμ(x) and Sμ(x). In our experiment, we
set α = β = 1.

Now, we introduce how to compute the structural sim-
ilarity in the edge image. Structural information is an
excellent attribute for characterizing the quality of an
image. Proper structural change may even improve the
perceptual quality of images. There are different meth-
ods for structural measurement, such as gradient modulus
(GM), Harris response, etc. Thus, we chose gradient mod-
ulus to compute the structural similarity. There are several
differentiation operators that can accomplish this task
[30–34], such as Sobel operator [30], Prewitt operator
[31], and Scharr operator. In this paper, we choose Prewitt
operator. With Prewitt operator, the partial derivatives
Gx (x) and Gy (x) are calculated as:

Gx (x) =
⎡
⎣

−1 0 1
−1 0 1
−1 0 1

⎤
⎦∗f (x) ,Gy (x) =

⎡
⎣

1 1 1
0 0 0

−1 −1 −1

⎤
⎦∗f (x)

The GM of f (x) is then computed as Gx (x) =√
G2
x (x) + G2

y (x). Let G1 and G2 denote the GM of edge
images fu1 and fu2, then, the structural similarity is defined
as:

ES(x) = 2G1 (x) · G2 (x) + C3

G1 (x)2 + G2 (x)2 + C3
(11)

Then, TS (x) and ES (x) are combined to get the local
similarity S (x) of f1 (x) and f2 (x), defined as:

S (x) = [TS (x)]γ · [ES (x)]δ (12)

After computing the local similarity Sμ(x) at each loca-
tion x, the overall similarity can be calculated. The most
commonly used pooling strategy is average pooling, i.e.,
simply averaging the local quality map as the final FR-IQA
score. However, different locations have different contri-
butions to HVS’ perception of image [11]. In [11] and
[35], the phase congruency and visual saliency map are
used as the weighting function in the overall similarity.
Based on the analysis above, for a given location x, if
anyone of fv1 and fv2 has a significant difference diffu-
sion value, it implies that this position x will have a high
impact on HVS. Therefore, we use TMm = max

(
fv1, fv2

)
to weight the importance of Sμ(x) in the overall similarity,
the IDSSIM index is defined as:

IDSSIM =
∑

x∈η S (x) · TMm (x)∑
x∈η TMm (x)

(13)

where η means the whole image spatial domain.

2.5 Extension to color IQA
It is known that variations of chrominance components
also affect perceived visual quality in color images. To
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Table 2 Benchmark datasets for evaluating IQA indices

Dataset Reference images Distorted images Distorted types Subjects

TID2013 25 3000 24 971

TID2008 25 1700 17 838

CSIQ 30 866 6 35

LIVE 29 779 5 161

A57 3 54 6 7

reflect this effect on IDSSIM, we devise two similar-
ity measures SI and SQ by comparing two chrominance
values, defined as:

SI(x) = 2I1 (x) · I2 (x) + C4

I1 (x)2 + I2 (x)2 + C4
(14)

SQ(x) = 2Q1 (x) · Q2 (x) + C5

Q1 (x)2 + Q2 (x)2 + C5
(15)

where C4 and C5 are positive constants. Finally, the
IDSSIM index can be extended to IDSSIMc, defined as:

IDSSIMc =
∑

x∈η S (x) · [
SI(x) · SQ(x)

]λ · TMm (x)∑
x∈η TMm (x)

(16)

where λ is a parameter used to adjust the relative
importance of chrominance features.

3 Simulation result and discussion
3.1 Databases and evaluation criteria
The performance of the proposed method is tested on
four well-known image quality assess databases, including
TID2013 database [36], TID2008 database [37], Categor-
ical Image Quality (CSIQ) database [38], LIVE database
[39], and A57 database [40]. The characteristics of these
databases are listed in Table 2.
In the following experiments, we use four evalua-

tion criteria to compare the performance of the FR-IQA
methods: the Spearman rank order correlation coeffi-
cient (SROCC), the Kendall rank order correlation coeffi-
cient (KROCC), the Pearson linear correlation coefficient
(PLCC), and the root-mean-squared error (RMSE). The
SROCC and KROCC are used to measure the prediction
monotonicity of an IQA index; the larger the value, the
better the performance. Since these two criteria only focus
on the rank of the data points and ignore the relative dis-
tance between data points. Before computing the other
two criteria, it is customary to apply a logistic transform to
obtain a nonlinear mapping between the objective scores
and subjective mean opinion scores. The PLCC is used to
measure the correlation degree between objective scores
and the subjective mean opinion scores (MOS) after non-
linear regression; larger value means better performance.
The RMSE measures the prediction consistency; smaller
valuemeans better performance. For the nonlinear regres-
sion, we use the following mapping function [39]:
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Fig. 3 Different parameters performance The performance of IDSSIM in terms of SROCC with different parameters on a TID2008 and b TID2013
datasets
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Table 3 Parameters setting for IDSSIM

Parameter K C1 C2 C3 C4 C5 t τ γ δ

Value 2 6.5 170 185 200 200 1 500 0.7 0.3

f (x) = β1 ·
(
1
2

− 1
1 + exp (β2 · (x − β3))

)
+β4 ·x+β5

(17)

where βi, i = 1, 2, . . . , 5 are parameters to be fitted. More
details about the four performance metrics can be found
in [13]. We compare our method with the 10 other state-
of-the-art and representative FR-IQA methods, including
VIF [41], GSM [21], PSNR [5], VSNR [40], SSIM [3], MSS-
SIM [12], IWSSIM [13], RFSIM [23], FSIM/FSIMc [11],
and SFF [42].

3.2 Determination of parameters
There are several parameters required to be determined
for IDSSIM/IDSSIMc. We tuned the parameters based
on the TID2013 database, which contains 25 reference
images in TID2013 and the associated 3000 distorted
images. The tuning criterion is that the parameter value
leading to a higher SROCC would be chosen. In order to
show the performance according to the parameters (time
step τ and iteration number t) of IDSSIM/IDSSIMc, we
conducted experiments where the size of the time step
and the iteration numbers are varied. As shown in Fig. 3,
we can see that the SROCC increases with the increase of
time step and iteration numbers. It is also noteworthy that
a smaller number of iterations and a larger time step can
also guarantee a significant improvement, with less pro-

cessing time. Considering its overall performance on all
the benchmark databases, the parameters are set the num-
ber of iterations t = 1 and τ = 500. The parameters of
IDSSIM/IDSSIMc are listed in Table 3.
In IDSSIM pooling stage, the texture image is used as a

weighting function. Figure 4 shows the influences of using
texture component as a weighting function. This experi-
ment is carried out on five databases: TID2013 database
[36], TID2008 database [37], CSIQ database [38], LIVE
database [39], and A57 database [40]. The Spearman’s
rank ordered correlation coefficient (SROCC) is used as
the evaluation criterion here. From Fig. 4, we observe
that the IDSSIM has better performance when the texture
image is adopted as the weight function.

3.3 Performance evaluation
In this section, we compare the competing FR-IQA mod-
els’ performance on the five FR-IQA databases in terms
of SROCC, KROCC, PLCC, and RMSE. It is noticed that,
except the FSIMc, SFF, and IDSSIMc, all the other IQA
indices are based on the luminance component of the
image. The results are listed in Table 4. For each perfor-
mance measure, the three FR-IQA indices producing the
best results are highlighted in italics. In Table 5, we list
the performance ranking of all the IQA metrics accord-
ing to their SROCC values. For fairness, the FSIMc, SFF,
and IDSSIMc indices, which also exploit the chrominance
information of images, are excluded in Table 5. Notice that
most of the metrics perform well in the LIVE database,
and the LIVE database only contains a few distortion
types. Therefore, the experimental results on TID are
more reliable.
In Table 4, we can see that the proposed IDSSIMc per-

forms consistently well on all the benchmark databases.

TID2013 TID2008 CSIQ LIVE A57
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
None weighted function
Weighted function

Fig. 4Weight function performance. The SROCC of IDSSIM with weight function and IDSSIM without weight function to evaluate on LIVE, TID2008,
TID2013, CSIQ, and A57 databases



Yang et al. EURASIP Journal on Image and Video Processing  (2016) 2016:31 Page 8 of 13

Table 4 Comparison of 8 IQA indices on three benchmark datasets

VIF GSM PSNR VSNR SSIM MSSSIM IWSSIM RFSIM FSIM FSIMc SFF IDSSIM IDSSIMc
TID
2013

SROC 0.6769 0.7946 0.6862 0.6812 0.7417 0.7859 0.7779 0.7744 0.8015 0.8510 0.8513 0.8304 0.8608

KROC 0.5147 0.6255 0.5043 0.5084 0.5588 0.6047 0.5977 0.5951 0.6289 0.6665 0.6588 0.6451 0.6781

PLCC 0.7720 0.8464 0.6902 0.7402 0.7895 0.8329 0.8319 0.8333 0.8589 0.8769 0.8706 0.8584 0.8813

RMSE 0.7880 0.6603 0.8976 0.8392 0.7608 0.6861 0.6880 0.6852 0.6349 0.5959 0.6099 0.6358 0.5859
TID
2008

SROC 0.7491 0.8504 0.5245 0.7046 0.7749 0.8542 0.8559 0.8680 0.8805 0.8840 0.8767 0.8736 0.8852

KROC 0.5860 0.6596 0.3696 0.5340 0.5768 0.6568 0.6636 0.6780 0.6946 0.6991 0.6882 0.6827 0.7023

PLCC 0.8084 0.8422 0.5309 0.6820 0.7732 0.8451 0.8579 0.8645 0.8738 0.8762 0.8817 0.8646 0.8741

RMSE 0.7899 0.7235 1.1372 0.9815 0.8511 0.7173 0.6895 0.6746 0.6525 0.6468 0.6333 0.6742 0.6518

CSIQ SROC 0.9195 0.9108 0.8057 0.8106 0.8756 0.9133 0.9213 0.9295 0.9242 0.9310 0.9627 0.9451 0.9419

KROC 0.7537 0.7374 0.6080 0.6247 0.6907 0.7393 0.7529 0.7645 0.7567 0.7690 0.8281 0.7947 0.7875

PLCC 0.9277 0.8964 0.8001 0.8002 0.8613 0.8991 0.9144 0.9179 0.9120 0.9192 0.9643 0.9317 0.9335

RMSE 0.0980 0.1164 0.1575 0.1575 0.1334 0.1449 0.1063 0.1042 0.1022 0.1034 0.0695 0.0953 0.0941

LIVE SROC 0.9636 0.9561 0.8755 0.9274 0.9479 0.9513 0.9567 0.9401 0.9634 0.9645 0.9649 0.9516 0.9555

KROC 0.8282 0.8150 0.6864 0.7616 0.7963 0.8045 0.8175 0.7816 0.8337 0.8363 0.8365 0.8063 0.8095

PLCC 0.9604 0.9512 0.8721 0.9231 0.9449 0.9489 0.9522 0.9354 0.9597 0.9613 0.9632 0.9473 0.9501

RMSE 7.6137 8.4327 13.368 10.506 8.9455 8.6188 8.3473 9.6642 7.6780 7.5269 7.3460 8.7514 8.5221

A57 SROC 0.6223 0.9018 0.6189 0.9355 0.8066 0.8394 0.8706 0.8215 0.9181 – – 0.9285 –

KROC 0.4589 0.8724 0.4309 0.8031 0.6058 0.6478 0.6848 0.6324 0.7639 – – 0.7741 –

PLCC 0.6158 0.7231 0.6587 0.9472 0.8017 0.8504 0.9035 0.8475 0.9252 – – 0.9282 –

RMSE 0.1936 0.1206 0.1849 0.0781 0.1469 0.1293 0.1052 0.1305 0.0933 – – 0.0900 –

The top 3 indices are highlighted in italics

On the largest database TID2013, the proposed method
IDSSIMc achieves the best results. SFF is the second best
performing method. On TID2008, IDSSIMc shows the
best performance, closely followed by FSIMc. The results
on CSIQ and LIVE databases show that, even though it
is not the best, IDSSIMc performs only slightly worse
than the best results. On the A57 database, VSNR per-
forms the best, and IDSSIM and IWSSIM perform almost
the same. In Table 5, we can see that our methods achieve

Table 5 Ranking of IQA metrics’ performance (except for FSIMc,
SFF, and IDSSIMc) on five databases

Method TID2013 TID2008 CSIQ LIVE A57

VIF [41] 10 8 5 1 9

GSM [21] 3 6 7 4 4

PSNR [5] 8 10 10 10 10

VSNR [40] 9 9 9 9 1

SSIM [3] 7 7 8 7 8

MSSSIM [12] 4 5 6 6 6

IWSSIM [13] 5 4 4 3 5

RFSIM [23] 6 3 2 8 7

FSIM [11] 2 1 3 2 3

IDSSIM 1 2 1 5 2

The proposed methods are highlighted in italics

the best results on almost all the databases, except for
TID2008 and LIVE. Even on these two databases, how-
ever, the proposed IDSSIM is only slightly worse than the
best results.
Table 6 shows the result of the weighted-average

SROCC, KROCC, and PLCC results over three datasets.
The weight assigned to each dataset linearly depends

Table 6 Weighted-average performances over three datasets

Method SROCC KROCC PLCC

VIF [41] 0.7639 0.6043 0.8247

GSM [21] 0.8460 0.6752 0.8640

PSNR [5] 0.6824 0.5046 0.6852

VSNR [40] 0.7376 0.5648 0.7573

SSIM [3] 0.7947 0.6113 0.8143

MSSSIM [12] 0.8422 0.6618 0.8596

IWSSIM [13] 0.8409 0.6641 0.8654

RFSIM [23] 0.8411 0.6634 0.8658

FSIM [11] 0.8601 0.6901 0.8831

FSIMc [11] 0.8846 0.7101 0.8928

SFF [42] 0.8872 0.7116 0.8977

IDSSIM 0.8730 0.6960 0.8814

IDSSIMc 0.8900 0.7156 0.8949

The top 1 index is highlighted in italics
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Fig. 5 Scatter plots of subjective MOS against scores obtained by model prediction on the TID2013 database a IFC, b VIF, c GSM, d PSNR, e VSNR,
f SSIM, gMSSSIM, h IWSSIM, i RFSIM, j FSIM, k IDSSIM and l IDSSIMc



Yang et al. EURASIP Journal on Image and Video Processing  (2016) 2016:31 Page 10 of 13

on the number of distorted images contained in that
dataset. The results show that the performance of pro-
posed IDSSIM/IDSSIMc is superior to other meth-
ods. Moreover, Fig. 5 shows the scatter plots of the
subjective scores against objective scores predicted on
TID2013. Compared with other scatter plots, the pro-
posed IDSSIM and IDSSIMc show better linearity and
correlation. It is, therefore, reasonable to conclude
that objective scores predicted by IDSSIM/IDSSIMc is
more correlated with subjective ratings than the other
methods.

3.4 Statistical significance
In order to make statistically meaningful conclusions on
the models performance, the left-tailed F-test is con-
ducted on the prediction residuals between the metric
outputs (after nonlinear mapping) and the subjective rat-
ings. Let F denotes the ratio between the residual vari-
ances of two different metrics, Fcritical is calculated based
on the number of residuals and a given confidence level.
If F is larger than Fcritical, then the difference between

the two metrics is considered to be significant at the
specified confidence level. The Fcritical with 95 % confi-
dence is shown in Fig. 6 for the TID2008 and TID2013
databases. In Fig. 6, the proposed metric is compared
with the other metrics regarding the statistical signifi-
cance. In each entry, the symbol “1” or “0” means that
on the image databases indicated by the first column of
the table, the proposed metric is statistically (with 95 %
confidence) better or worse, respectively, when compared
with its competitors indicated by the first row. We can
see that on TID2013 databases, IDSSIMc is significantly
better than all the other models except for FSIMc. On
TID2008 database, IDSSIMc is significantly better than all
the other models except for SFF and FSIMc. Note that on
the two databases, no IQA model performs significantly
better than IDSSIMc.

3.5 Performance comparison on individual distortion
types

To further examine the robustness of the FR-IQA
schemes, we compare the performance of our method

TID2013 VIF GSM PSNR VSNR SSIM MSSSIM IWSSIM RFSIM FSIMc SFF IDSSIMc

VIF
GSM
PSNR
VSNR
SSIM

MSSSIM
IWSSIM
RFSIM
FSIMc

SFF
IDSSIMc

a
TID2008 VIF GSM PSNR VSNR SSIM MSSSIM IWSSIM RFSIM FSIMc SFF IDSSIMc

VIF
GSM
PSNR
VSNR
SSIM

MSSSIM
IWSSIM
RFSIM
FSIMc

SFF
IDSSIMc

b
Fig. 6 The results of statistical significance tests of the competing IQA models on the a TID2013 and b TID2008 databases. The value of “1”
(highlighted in green) indicates that the model in the row is significantly better than the model in the column, while the value of “0” (highlighted in
red) indicates that the first model is not significantly better than the second one
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Table 7 SROCC valuse of IQA indices for each type of distortions in TID2013 and TID2008

Dis.Type VIF GSM PSNR VSNR SSIM MSSSIM IWSSIM RFSIM FSIM FSIMc SFF IDSSIM IDSSIMc
TID
2013

AGN 0.8996 0.9063 0.9338 0.8270 0.8687 0.8663 0.8448 0.8877 0.8984 0.9115 0.9070 0.8981 0.9264

ANC 0.8428 0.8175 0.8667 0.7266 0.7726 0.7729 0.7514 0.8476 0.8207 0.8536 0.8166 0.8316 0.8496

SCN 0.8835 0.9158 0.9245 0.8024 0.8515 0.8543 0.8166 0.8821 0.8749 0.8905 0.8998 0.8822 0.9129

MN 0.8449 0.7292 0.8355 0.7118 0.7766 0.8074 0.8019 0.8366 0.7943 0.8093 0.8184 0.8233 0.8188

HFN 0.8972 0.8869 0.9182 0.8566 0.8633 0.8648 0.8589 0.9145 0.8991 0.9058 0.9066 0.9000 0.9099

IN 0.8536 0.7964 0.9000 0.7343 0.7503 0.7628 0.7281 0.9062 0.8072 0.8250 0.7870 0.8595 0.8541

QN 0.8161 0.8841 0.8754 0.8356 0.8657 0.8705 0.8467 0.8968 0.8719 0.8806 0.8638 0.8462 0.8838

GB 0.9649 0.9689 0.9102 0.9469 0.9667 0.9672 0.9701 0.9697 0.9550 0.9550 0.9674 0.9692 0.9630

DEN 0.9064 0.9432 0.9503 0.9104 0.9254 0.9267 0.9152 0.9359 0.9301 0.9330 0.9090 0.9405 0.9456

JPEG 0.9191 0.9284 0.9217 0.9007 0.9200 0.9265 0.9197 0.9398 0.9378 0.9386 0.9272 0.9414 0.9493

JP2K 0.9516 0.9601 0.8858 0.9273 0.9468 0.9504 0.9506 0.9518 0.9576 0.9588 0.9575 0.9589 0.9645

JGTE 0.8441 0.8512 0.8060 0.8181 0.8493 0.8475 0.8387 0.8786 0.8463 0.8610 0.8830 0.8655 0.8709

J2TE 0.8760 0.9181 0.8905 0.8407 0.8828 0.8888 0.8656 0.9102 0.8912 0.8918 0.8707 0.9045 0.9062

NEPN 0.7719 0.8130 0.6791 0.6652 0.7821 0.7968 0.8010 0.7704 0.7917 0.7936 0.7667 0.7470 0.7830

Block 0.5306 0.6418 0.3297 0.1771 0.5720 0.4800 0.3716 0.0338 0.5489 0.5531 0.1785 0.5292 0.4266

MS 0.6275 0.7874 0.7571 0.3632 0.7751 0.7906 0.7833 0.5547 0.7530 0.7486 0.6653 0.6626 0.6994

CTC 0.8523 0.4856 0.4466 0.3319 0.4314 0.4633 0.4592 0.5591 0.4686 0.4755 0.4902 0.4858 0.4713

CCS 0.3099 0.3573 0.6388 0.3676 0.4141 0.4099 0.4196 0.0204 0.2748 0.8358 0.8268 0.6690 0.8385

MGN 0.8466 0.8347 0.8831 0.7644 0.7803 0.7785 0.7727 0.8487 0.8469 0.8569 0.8434 0.8788 0.8813

CN 0.8948 0.9124 0.8413 0.8690 0.8565 0.8527 0.8761 0.8917 0.9120 0.9135 0.9007 0.9051 0.9188

LCNI 0.9229 0.9562 0.9155 0.8821 0.9057 0.9067 0.9037 0.9009 0.9466 0.9485 0.9261 0.8988 0.9391

LCQD 0.8463 0.8972 0.9201 0.8695 0.8542 0.8554 0.8401 0.8959 0.8759 0.8815 0.8794 0.8890 0.8963

CHA 0.8848 0.8822 0.8797 0.8644 0.8774 0.8784 0.8681 0.8990 0.8714 0.8925 0.8788 0.8927 0.8870

SSR 0.9371 0.9667 0.9108 0.9364 0.9460 0.9482 0.9474 0.9325 0.9564 0.9576 0.9536 0.9536 0.9621
TID
2008

AGN 0.8838 0.8606 0.9070 0.7727 0.8106 0.8085 0.7869 0.8415 0.8566 0.8758 0.8731 0.8501 0.8974

ANC 0.8750 0.8090 0.8994 0.7793 0.8029 0.8053 0.7920 0.8621 0.8527 0.8930 0.8625 0.8595 0.8821

SCN 0.8709 0.8941 0.9169 0.7664 0.8143 0.8209 0.7713 0.8475 0.8486 0.8718 0.8951 0.8653 0.9074

MN 0.8683 0.7452 0.8515 0.7294 0.7794 0.8106 0.8088 0.8533 0.8021 0.8263 0.8365 0.8523 0.8455

HFN 0.9074 0.8945 0.9270 0.8800 0.8773 0.8733 0.8702 0.9181 0.9152 0.9233 0.9187 0.9091 0.9100

IN 0.8464 0.7234 0.8723 0.6471 0.6732 0.6907 0.6464 0.8805 0.7452 0.7719 0.7483 0.8074 0.8141

QN 0.8816 0.8799 0.8696 0.8261 0.8530 0.8588 0.8176 0.8950 0.8564 0.8725 0.8471 0.8481 0.8869

GB 0.9540 0.9599 0.8684 0.9330 0.9544 0.9563 0.9636 0.9408 0.9471 0.9471 0.9623 0.9574 0.9529

DEN 0.9182 0.9724 0.9416 0.9299 0.9529 0.9582 0.9473 0.9399 0.9602 0.9618 0.9383 0.9539 0.9657

JPEG 0.9167 0.9393 0.8717 0.9174 0.9251 0.9321 0.9208 0.9385 0.9369 0.9385 0.9322 0.9438 0.9571

JP2K 0.9709 0.9761 0.8131 0.9515 0.9629 0.9699 0.9738 0.9487 0.9773 0.9780 0.9764 0.9694 0.9765

JGTE 0.8585 0.8790 0.7565 0.8113 0.8677 0.8680 0.8588 0.8534 0.8707 0.8756 0.8567 0.8701 0.8861

J2TE 0.8500 0.8935 0.8308 0.7909 0.8576 0.8606 0.8202 0.8591 0.8543 0.8554 0.8385 0.8602 0.8680

NEPN 0.7619 0.7386 0.5814 0.5715 0.7107 0.7376 0.7724 0.7274 0.7491 0.7514 0.6969 0.6824 0.7415

Block 0.8320 0.8862 0.6192 0.1926 0.8462 0.7557 0.7623 0.6258 0.8493 0.8470 0.5368 0.7520 0.7811

MS 0.5095 0.7190 0.7107 0.3714 0.7230 0.7336 0.7066 0.4335 0.6720 0.6553 0.5224 0.5514 0.5902

CTC 0.8403 0.6691 0.6042 0.4746 0.4411 0.6380 0.6301 0.5431 0.6481 0.6509 0.4635 0.6459 0.6629

The top 3 indices are highlighted in italics
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Table 8 Analysis of the processing time for the proposed method

Modules Decomposition Texture similarity Edge similarity Chrominance similarity IDSSIM IDSSIMc

Time(s) 0.066 0.008 0.019 0.026 0.093 0.119

Ratio 55.4 % 6.7 % 15.9 % 22 % 78.1 % 100 %

with other methods on each distortion type in TID2013
and TID2008 databases. In this experiment, we only
use the SROCC values as the performance measure.
For each performance measure, the top three results
are highlighted in italics. From Table 7, we can clearly
see that IDSSIMc is among the top three indices 15
times on TID2013 and 10 times on TID2008. Thus,
we can have the following conclusions: when the dis-
tortion is of a specific type, the proposed method also
performs well.

3.6 Computational cost
The computational cost of each FR-IQA method is also
measured. This experiment is performed on a 2.5-GHz
Intel core i5 processor with 10 GB RAM. The software is
Matlab R2014a. All distorted images in TID2013 dataset
are used. To analyze the processing time in detail, we
divided the proposed scheme into four main steps: image
decomposition, compare the luminance and contrast sim-
ilarity in texture image, compare the structural similar-
ity in edge image, and compute the global perceptual
quality scores. The average processing time for the test
dataset is shown in Table 8. These results show that
the performance of the proposed method may be con-
sidered sufficient to allow its implementation in real-
time applications. It should be noted that the image
decomposition process is the element that consumes
most of the processing time. The average processing
time of each FR-IQA method is listed in Table 9.
From Table 9, we can see that PSNR and GMS are
much faster than IDSSIM. However, their performances
are fairly worse than IDSSIM. Specifically, IDSSIM
runs much faster than the other modern IQA indices
which could achieve the state-of-the-art prediction
performance.
As mentioned earlier, the IQA algorithm can be not

only used for quality assessment tasks but also pervasively
used in many other applications. A direct application of
IQA measures is to use them to benchmark the image
processing algorithms and systems [43]. For example, the
rate distortion (RD) curves are often used to character-
ize the performance of image coding systems, where the
RD function is defined as the bit rate distortion between
the original and decoded images. A lower RD curve indi-
cates a better image coder. To compute this distortion
and obtain the RD curve, a lot of methods based on MSE

are proposed. However, these methods suffer from low
accuracy. As we mentioned earlier, the RD curve can be
used to precisely evaluate the image coder only if the IQA
methods have higher accuracy. To improve the accuracy,
VIF, FSIM, and MSSSIM are proposed. However, these
methods suffer from low computation efficiency, which
renders them cannot be used in many applications. Differ-
ent from previous work, our proposed IDSSIM not only
has the high accuracy but also achieves the high efficiency,
which is very attractive and competitive for real-time
applications.

4 Conclusions
In this paper, we propose an efficient and robust method
for image quality assessment. Different from prior arts,
we realize different methods on different components to
compute image quality. The inspiration behind this paper
is that different quality metrics have different sensitiv-
ity in different regions. We also propose to exploit the
AOS scheme to compute the diffusion map efficiently. In
the pooling stage, the texture component image is used
to weight the importance of local quality map. We then
extended IDSSIM to IDSSIMc by incorporating the image
chromatic features into consideration. Finally, we con-
duct extensive experiments on five databases; the results
demonstrate that our proposed methods yield a superior
performance than the other state-of-the-art methods.

Table 9 Time cost Of each FR-IQA index

Method Time cost(s)

VIF [41] 0.977

GSM [21] 0.028

PSNR [5] 0.003

VSNR [40] 0.498

SSIM [3] 0.022

MSSSIM [12] 0.136

IWSSIM [13] 0.519

RFSIM [23] 0.165

FSIMc [11] 0.512

SFF [42] 0.143

IDSSIM 0.093

IDSSIMc 0.119

The proposed methods are highlighted in italics
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