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Abstract 

Speckle noise corrupts synthetic aperture radar (SAR) images and limits their applica-
tions in sensitive scientific and engineering fields. This challenge has attracted several 
scholars because of the wide demand of SAR images in forestry, oceanography, geol-
ogy, glaciology, and topography. Despite some significant efforts to address the chal-
lenge, an open-ended research question remains to simultaneously suppress speckle 
noise and to restore semantic features in SAR images. Therefore, this work establishes 
a diffusion-driven nonlinear method with edge-awareness capabilities to restore 
corrupted SAR images while protecting critical image features, such as contours 
and textures. The proposed method incorporates two terms that promote effective 
noise removal: (1) high-order diffusion kernel; and (2) fractional regularization term 
that is sensitive to speckle noise. These terms have been carefully designed to ensure 
that the restored SAR images contain stronger edges and well-preserved textures. 
Empirical results show that the proposed model produces content-rich images 
with higher subjective and objective values. Furthermore, our model generates images 
with unnoticeable staircase and block artifacts, which are commonly found in the clas-
sical Perona–Malik and Total variation models.

Keywords:  Image restoration, Multiplicative noise, Noise removal, Regularization, 
Speckle, SAR

1  Introduction
Synthetic aperture radar (SAR) refers to a classification of radars that uses an antenna 
mounted on a moving platform, such as an aircraft, to generate detailed images with 
finer resolution compared with the conventional beam-scanning radars [1]. SAR can 
operate in different weather conditions, thus making the technology applicable in a 
wide range of fields: military, oceanography, geology, agriculture, and hydrology [2]. 
Despite the advantages, SAR imagery suffers from speckle noise (randomly distrib-
uted black and white spots in the SAR image) caused by interference of coherent elec-
tromagnetic radiation during the imaging process  [3, 4]. Speckle noise degrades the 
visual quality of SAR images, hence making them relatively challenging to interpret 
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and analyze—a consequence that may limit the application of such images in impor-
tant scientific and engineering fields.

Scholars have proposed various methods to suppress speckle noise in SAR images. 
Glaister et  al.  [5] proposed a Monte Carlo texture-sensitive algorithm to despeckle 
SAR images by combining two models: local texture and Fisher Tippett logarithmic 
space speckle distribution. Ni and Gao  [6] proposed a despeckling scheme, called 
the generalized guided filter, where they deduced a nonlinear weight kernel and 
constructed the guidance image using homogeneity analysis of local regions. Meng 
et al. [7] introduced a speckle reduction model that focused on the data fidelity term 
to ensure convexity, and on the Beltrami regularization term to restrain staircase 
artifacts, while denoising speckles in SAR images. Yu et al. [8] proposed a three-step 
algorithm (calculation accuracy improvement, iteration, and correction of spread-
ing and blurring of white structures) to suppress speckle noise in SAR images. Many 
researchers have, also, analyzed various filters, including the Lee Frost, to despeckle 
SAR images [9–16]. Cao et al.  [17] applied deep denoising and convolutional neural 
networks to detect changes in SAR images. The model was trained to estimate com-
ponents that contain noise in an image, and these components were then removed to 
generate better results. In addition, the concept of deep neural network was applied 
to remove noise on predefined layers of an image. Recently, Gu et al. proposed a two-
component deep learning network for restoration of corrupted SAR images. This 
method gives a proper trade-off between noise reduction and texture preservation, 
thanks to its spatially adaptive capability [18]. However, the method by Gu et al. suf-
fers from intensity normalization problems, which reduce its performance in images 
with higher noise density. Other methods for restoring corrupted SAR images have 
also been proposed in the literature [19–24].

Despite the efforts to despeckle SAR images, the available solutions cannot satisfacto-
rily remove noise while preserving useful features (edges, contours, and textures). Non-
linear diffusion offers a promising approach to achieve the two demands and to generate 
appealing results with higher perceptual and objective qualities. The performance of 
this denoising framework, however, depends on the regularization prior, which is usu-
ally integrated into the divergence term to address the ill-posedness problem caused by 
insufficient measurements from the observation model (formulation that shows how 
speckle noise degrades an SAR image). Regularization ensures a proper balance between 
smoothness of the solution and level of noise in the target image. In this work, we have 
proposed a regularized nonlinear diffusion model to restore critical features in SAR 
images while maintaining sufficiently small the amount of noise in the images.

Our research offers three scientific contributions: first, an effective high-order diffu-
sion kernel has been established to regularize noisy images; second, a fractional regu-
larization term that is sensitive to multiplicative noise has been proposed; and third, a 
mathematical relationship between the proposed method and classical diffusion mod-
els (Total variation and Perona–Malik) has been presented. These contributions can 
advance our current understanding on diffusion processes in image restoration prob-
lems. Furthermore, the proposed model gives a proper balance between noise removal 
and preservation of semantic image features. Moreover, experimental results show that 
our model remains stable in the iteration system over a longer period. Therefore, the 
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model can generate appealing images after many iterations, whereas other methods 
demonstrate poor performance under this condition.

2 � Methods
2.1 � Problem formulation

In the context of image processing, nonlinear diffusion refers to the process where image 
regions receive varied denoising levels: stronger diffusion in constant-intensity or nearly 
flat regions, where noise seems visible naturally; and weaker diffusion near edges and 
contours [25]. This discriminatory nature of the (nonlinear diffusion) process promotes 
simultaneous edge recovery and noise removal—an advantage that generates content-
rich and perceptually appealing images that can be applied in sensitive applications, 
including remote detection and analysis of scientific images.

Consider an evolutionary system governed by the time scale, t, which defines smooth-
ness of the evolving (denoising) solution, u. If f denotes the original noisy image, then 
the nonlinear diffusion process can be described by the general transport equation

where ρ′(·) shows the first derivative of the energy functional, ρ(|∇u|) , that dictates the 
diffusion process. To achieve desirable solution, scholars recommend ρ(·)  to be convex 
and strictly increasing functional. The term

called diffusivity (conduction coefficient), in (2.1) defines the rate of denoising. The reg-
ularization parameter, � , in (2.1) attempts to establish a trade-off between noise level 
and smoothness of the evolving solution. Furthermore, the regularization term, R(·) , 
deals with optimum noise minimization relative to the observation (degradation) model, 
f = uη , where η denotes the speckle noise power (assumed to be statistically independ-
ent of u and f).

For decades, the Perona–Malik nonlinear diffusion model has been widely applied to 
strategically de-emphasize spurious image features while protecting semantic informa-
tion [26]. The authors of this model proposed

where K ∈ R
+ represents the shape-defining constant. This diffusivity originates from 

a non-convex energy functional, thus making the Perona–Malik model susceptible to 
instabilities—a consequence that generates speckle and staircase effects  [27]. Rudin 
et al.  [28] proposed a nonlinear diffusion model based on the Total variation of a sig-
nal, and the authors used φ(|∇u|) = 1 that emulates a convex energy functional. This 
improved version of the Perona–Malik model produces appreciable results, but suffers 
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from blocky and intensity reversal artifacts. Both Perona–Malik and Rudin et al. models 
form the basis of several other nonlinear denoising methods.

Most studies on nonlinear diffusion processes deal with design of the diffusivity and 
regularization terms to overcome weaknesses of Perona–Malik and Total variation 
models [29–36]. Despite the convincing performances of the available methods, there 
has been no standard guidelines to design diffusion coefficients that promote effective 
noise removal in images. Therefore, variants of Perona–Malik and Total variation lack 
satisfactory mathematical justifications on why they, in some cases, tend to degenera-
tive solutions or to produce unwanted artifacts.

In this work, we have established a general nonlinear diffusion equation

where α ∈ R
+ represents a tuning parameter. Next, extensive range of experiments were 

conducted to determine the numerical value of α , and to find the polynomial order of 
the diffusivity term that can generate optimum denoising results. These experiments 
aimed at determining numerical values of i and α that neutralize unnecessary artifacts 
observed in the Perona–Malik and Total variation models. Therefore, we experimentally 
found that

with α = 1
6 and i ∈ {1, 3} , meets our requirements. These numerical values were obtained 

by running the model in  (2.4) through a two-dimensional space of {α, i} parameters. 
Next, optimal values that generate pleasing results were extracted from the space and 
plugged into the proposed model. The variables in (2.5) are defined as follows: x, two-
dimensional spatial coordinates in space; � , domain that defines u and f; T, total time 
spent by u in the evolutionary system; and  �n , normal vector. Furthermore, empirical 
results suggest that K1 = 1 and K2 = 13 give denoised images with minimum artifacts.

2.2 � Analysis of the proposed model

Performance of the nonlinear diffusion model depends on its corresponding energy 
functional. Results from previous studies show that most models with convex energy 
functionals achieve appealing results and converge fast to desirable solutions: 
detailed images with satisfactory subjective and objective qualities  [37]. Some stud-
ies, however, argue that non-convex energy functionals can as well generate nonlinear 
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diffusion models with superior solutions. This situation may be observed in cases 
when such functionals originate from robust statistics [38, 39].

In this work, we have analyzed the convexity of our energy functional derived from the 
proposed diffusion equation. Deriving the corresponding energy functional, ρ(s = |∇u|) , 
of (2.5), we get

This equation has a non-trivial solution, and may be solved by relaxing the equation as

and by assuming that s >> a . The relaxation of equation (2.7), therefore, evaluates to

Convexity of ρ(s) in (2.8) can be derived through the derivative test. Therefore,

which gives negative values for K1 > 0 and K2 > 0 . Hence, our energy functional is non-
convex (Fig.  1). Further analysis of the functional shows that it partly harnesses char-
acteristics from the energy functionals originated from Perona–Malik and Rudin et al. 
models:
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where {ψ ,K3,K4} ∈ R
+ ; and, ρ(s)PM and ρ(s)TV , respectively, denote energy functionals 

corresponding to Perona–Malik and Rudin et al. models (Fig. 1).
Therefore, strength of the proposed model may be described from the outlined mathe-

matical characteristics of its energy functional, especially that of imitating the combined 
effects of the Perona–Malik and Rudin et al. energy functionals. Despite the non-con-
vexity nature of our energy functional, we achieved superior denoising results. Even 
more importantly, the evolutionary system defined by our model remains stable by gen-
erating meaningful results over a longer period; conversely, Perona–Malik  [26], Rudin 
et al. [28], and Charbonnier [40] diffusion models generate nearly constant solutions as 
t → ∞ (Fig. 2).

2.3 � Numerical implementation

The four-point explicit numerical scheme was applied to discretize our model for imple-
mentation into the Computer. This scheme has widely been preferred by scholars for its 
simplicity, lower computational complexity, and reasonable accuracy [41]. Furthermore, 
an explicit numerical scheme may guarantee stability under Courant–Friedrichs–Lewy 
condition [42], which requires restriction of time-step, 

�
t , of the evolutionary system to 

within the range [0, 0.25].
The numerical scheme used in our work contains four conduction coefficients in the 

North (N), South (S), East (E), and West (W) directions, respectively labeled as cNi,j , cSi,j , 
cEi,j , and cWi,j , where (i,  j) denotes coordinates of the discretized space corresponding 
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Fig. 2  Denoised images after 15,000 iterations
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to the continuous spatial space x. The discrete gradients of u along the four direc-
tions of the scheme can be defined as 

�
N ui,j = ui−1,j − ui,j , 

�
S ui,j = ui+1,j − ui,j , �

E ui,j = ui,j+1 − ui,j , and 
�

W ui,j = ui−1,j − ui,j .  
Navigating through the diffusivity of (2.5), the discrete versions of the conduction coef-

ficients and divergence term become

and

Therefore, the steepest descent equation [43] that combines discretized diffusivities and 
divergence term becomes

where

1 ≤ i ≤ P , 1 ≤ i ≤ Q (P and Q define number of rows and columns in ui,j or fi,j , respec-
tively), and n denotes the iteration number; also, h > 0 represents the grid interval, and 
ε > 0 prevents degenerative solutions due to division by zero. During the iteration pro-
cess, ui,j is gradually updated and improved until it attains the highest possible PSNR 
(peak signal to noise ratio) [44].

2.4 � Experiments

The performance of our model was verified through a series of experiments, and empiri-
cal results were compared against those generated by classical models: traditional Perona–
Malik  [26], Adaptive Perona–Malik (Guo)  [45], Charbonnier [40], Total Variation  [28], 
Deep Neural Network (DNN) [46], and FFDNet [47]. The models were selected based on 
relevance, recency, and citation count. The DNN and FFDNet models, in addition, high-
light the strength of our model relative to denoising models based on the deep neural net-
work framework that have demonstrated promising outcomes [46, 48–51].

The first experiment aimed at evaluating the ability of different nonlinear diffusion mod-
els to protect critical image features while ensuring minimum noise in flat regions. There-
fore, we applied the models on a synthetic image corrupted by speckle noise of density 0.05, 
sufficiently large amount of noise to discern the performance differences among the models 
under comparisons. Next, PSNR and MSSIM (mean structural similarity) [52] indices were 
applied to measure quality of the results. PSNR, defined by
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signifies the signal strength depicted by an image. Detailed images with minimum noise 
have higher PSNR values, and such images may be useful in various image processing 
tasks. On the contrary, MSSIM exploits the human visual system to describe the percep-
tual quality of the image. This metric follows the equation

where ( µu,µf  ) and ( σu,σf  ) denote means and standard deviations of u and f, respectively; 
σuf  depicts the covariance between u and f; and, c1 and c2 are stabilizing constants.

In the second set of experiments, the diffusion models were applied to natural SAR 
images 1 corrupted by noise with varied statistical distributions. Because of the unknown 
original images, we used the no-reference quality metric to assess the objective qualities 
of the restored images. This metric uses the von Mises distribution [53] with the prob-
ability density function defined by

where the variables and functions are defined as follows: Io(κ) , modified Bessel function 
of order zero; θ , 2π-interval within the graph; µ , mean of the distribution; and, κ , shape-
defining parameter of the von Mises distribution. The behavior of κ suggests that it can 
measure quality of an image. The value of κ increases with decreasing noise density. To 
further evaluate the performance of our method, another image quality assessment met-
ric, called Equivalent Number of Looks (ENL) was used [54–56]. ENL, given by

is computed over a selected homogeneous region of an image and measures the despeck-
ling capability of the method. Larger values of ENL signify effective removal of speckle 
noise in the image.

3 � Results and discussions
Visual results show that the proposed model remains stable over a longer period. In 
essence, the output images generated by our evolutionary system exhibit higher per-
ceptual qualities even when subjected to many iterations. Under this condition, other 
models (e.g. Total variation) perform poorly by generating nearly flat images (Fig.  2). 
Furthermore, PSNR and MSSIM values depicted by our model become fairly uni-
form after attaining global maxima (Fig.  3). This interesting behavior—which may be 
originated from a well-behaved energy functional—implies that the model guarantees 
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1  https://​rslab.​ut.​ac.​ir/​data.

https://rslab.ut.ac.ir/data
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appealing results irrespective of the iteration number. Figure 3 shows that other nonlin-
ear diffusion models require manual tuning of the iteration number to achieve relatively 
convincing results—a process that is both inconvenient and inefficient.

Error maps (absolute difference between original and restored images) show that 
the proposed model produces minimum visible errors compared with other classical 
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Fig. 4  Error maps generated by different denoising methods
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models (Fig. 4). Therefore, we can assert that our model restores content-rich images 
containing the lowest amount of noise. The new regularization term was crafted spe-
cifically to deal with the nature of noise in SAR images (speckle or multiplicative), and 
this design strategy could partly explain one of the reasons for the outperformance of 
the proposed model.

Furthermore, the proposed model can recover critical image features and suppress 
noise more effectively (Fig. 5). Compared with some classical methods, our edge-locat-
ing functional traces edges and contours more accurately, and ensures revelation of 
stronger and clearer edges that promote visual perception. The edge-recovery capability 
of the proposed functional may be useful in machine-related tasks that demand detailed 
scenes to make informed decisions. Conversely, Perona–Malik and Charbonnier models 
smudge edges, and Total variation tends to reduce intensity of the output images.
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Fig. 5  Error maps generated by different denoising methods

Fig. 6  Restored images by different models applied on the 180th-channel of the Indian pines dataset
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Empirical results from natural SAR images demonstrate the efficacy of our diffu-
sion model to suppress speckles (Figs. 6 and 7). The model retains naturalness of the 
images and encourages preservation of important features while optimally maintain-
ing minimum speckle noise. Figures 6 and 7 show that the visual results produced by 

Fig. 7  Restored images by different models applied on the Salinity Soil SAR image
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Fig. 8  Equivalent Number of Looks generated by different despeckling methods applied on the selected 
regions of an input image

Table 1  No-reference image quality values based on the von Mises distribution. (Images in the first, 
second, and third columns refer to specific channels in the Indian pines dataset)

Methods von Mises distribution quality value

120
th-Channel 70

th-Channel 50
th-Channel Washington Soil Salinity Las Vegas

Perona–Malik [26] 0.1168 0.1429 0.1292 0.3248 0.2951 0.1593

Guo [45] 0.1134 0.1133 0.1133 0.5539 0.4971 0.1445

Total variation [28] 0.1180 0.1414 0.1266 0.5017 0.3574 0.1659

Charbonnier [40] 0.1131 0.1190 0.1132 0.1799 0.1819 0.1130

DNN [46] 0.1229 0.1429 0.1292 0.5949 0.5366 0.1745

FFDNet [47] 0.3490 0.2421 0.2706 0.5751 0.4071 0.1867

Our model 0.1229 0.1443 0.1305 0.5708 0.4051 0.1745
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our model are comparable with those produced by deep neural networks, which have 
been benchmarked by scholars that they outperform most of the available denoising 
models [46, 47].

Using the no-reference quality metric, based on the von Mises distribution, we found that 
the proposed nonlinear diffusion model generate higher quantitative values in several cases 
(Table 1). However, the quality values of our method are slightly lower than that of FFD-
Net. Despite this observation, perceptual qualities of the images generated by FFDNet seem 
lower than those defined by the proposed model (Figs. 6 and 7): FFDNet tends to overs-
mooth the images and to modify their contrast features.

Furthermore, ENL values generated by despeckling methods suggest that the proposed 
model outperforms in terms of its ability to suppress spurious details in flat image regions 
(Fig. 8). In essence, ENL results depicted by our method are comparable with those demon-
strated by deep neural networks.

4 � Conclusion
This work introduces a nonlinear diffusion model for suppressing speckles in SAR images. 
Driven by the compelling results depicted by our model, future studies may need to address 
critical questions in the area of image denoising. First, how can we derive an exact energy 
functional corresponding to the proposed diffusion model? Second, can our model be used 
in conjunction with the deep neural networks to further improve the denoising results? 
Third, how can the shape-defining constants of the proposed model be automatically tuned 
(perhaps by defining them as functions of the evolving solution, u)? Can denoising methods 
that have demonstrated superior performance in other applications [57–59] be adapted to 
address challenges in SAR imagery? Answers to these important questions may advance 
the current research and make the results impactful to a range of science and engineering 
fields.
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